Reinforcement Learning-based control using Q-learning and gravitational search algorithm with experimental validation on a nonlinear servo system

被引:132
|
作者
Zamfirache, Iuliu Alexandru [1 ]
Precup, Radu-Emil [1 ]
Roman, Raul-Cristian [1 ]
Petriu, Emil M. [2 ]
机构
[1] Politehn Univ Timisoara, Dept Automat & Appl Informat, Bd V Parvan 2, Timisoara 300223, Romania
[2] Univ Ottawa, Sch Elect Engn & Comp Sci, 800 King Edward, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Gravitational search algorithm; NN training; Optimal reference tracking control; Q-learning; Reinforcement learning; Servo systems; PARTICLE SWARM OPTIMIZATION; FUZZY-LOGIC; STABILITY; DYNAMICS; DESIGN;
D O I
10.1016/j.ins.2021.10.070
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel Reinforcement Learning (RL)-based control approach that uses a combination of a Deep Q-Learning (DQL) algorithm and a metaheuristic Gravitational Search Algorithm (GSA). The GSA is employed to initialize the weights and the biases of the Neural Network (NN) involved in DQL in order to avoid the instability, which is the main drawback of the traditional randomly initialized NNs. The quality of a particular set of weights and biases is measured at each iteration of the GSA-based initialization using a fitness function aiming to achieve the predefined optimal control or learning objective. The data generated during the RL process is used in training a NN-based controller that will be able to autonomously achieve the optimal reference tracking control objective. The proposed approach is compared with other similar techniques which use different algorithms in the initialization step, namely the traditional random algorithm, the Grey Wolf Optimizer algorithm, and the Particle Swarm Optimization algorithm. The NN-based controllers based on each of these techniques are compared using performance indices specific to optimal control as settling time, rise time, peak time, overshoot, and minimum cost function value. Real-time experiments are conducted in order to validate and test the proposed new approach in the framework of the optimal reference tracking control of a nonlinear position servo system. The experimental results show the superiority of this approach versus the other three competing approaches. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:99 / 120
页数:22
相关论文
共 50 条
  • [21] Reinforcement Learning Control of Hydraulic Servo System Based on TD3 Algorithm
    Yuan, Xiaoming
    Wang, Yu
    Zhang, Ruicong
    Gao, Qiang
    Zhou, Zhuangding
    Zhou, Rulin
    Yin, Fengyuan
    MACHINES, 2022, 10 (12)
  • [22] Output Feedback Optimal Tracking Control Using Reinforcement Q-Learning
    Rizvi, Syed Ali Asad
    Lin, Zongli
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3423 - 3428
  • [23] Reinforcement learning inspired forwarding strategy for information centric networks using Q-learning algorithm
    Delvadia, Krishna
    Dutta, Nitul
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2024, 37 (06)
  • [24] Reinforcement Learning-based Control System of a Hybrid Power Supply
    Daniel, Francisca
    Rix, Arnold
    2020 INTERNATIONAL SAUPEC/ROBMECH/PRASA CONFERENCE, 2020, : 462 - 467
  • [25] A novel reinforcement learning-based reptile search algorithm for solving optimization problems
    Ghetas, Mohamed
    Issa, Mohamed
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (2) : 533 - 568
  • [26] Q-LEARNING BASED CONTROL ALGORITHM FOR HTTP ADAPTIVE STREAMING
    Martin, Virginia
    Cabrera, Julian
    Garcia, Narciso
    2015 VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2015,
  • [27] Behavior Control Algorithm for Mobile Robot Based on Q-Learning
    Yang, Shiqiang
    Li, Congxiao
    2017 INTERNATIONAL CONFERENCE ON COMPUTER NETWORK, ELECTRONIC AND AUTOMATION (ICCNEA), 2017, : 45 - 48
  • [28] Reinforcement Q-learning based flight control for a passenger aircraft under actuator fault
    Navid Mohammadi
    Moein Ebrahimi
    Morteza Tayefi
    Amirali Nikkhah
    Discover Mechanical Engineering, 4 (1):
  • [29] Control the population of free viruses in nonlinear uncertain HIV system using Q-learning
    Gholizade-Narm, Hossein
    Noori, Amin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2018, 9 (07) : 1169 - 1179
  • [30] Discrete-Time Optimal Control Scheme Based on Q-Learning Algorithm
    Wei, Qinglai
    Liu, Derong
    Song, Ruizhuo
    2016 SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2016, : 125 - 130