FlowGrid enables fast clustering of very large single-cell RNA-seq data

被引:4
|
作者
Fang, Xiunan [1 ]
Ho, Joshua W. K. [1 ,2 ]
机构
[1] Univ Hong Kong, Li Ka Shing Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[2] Lab Data Discovery Hlth Ltd D24H, Hong Kong Sci Pk, Hong Kong, Peoples R China
关键词
D O I
10.1093/bioinformatics/btab521
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Scalable clustering algorithms are needed to analyze millions of cells in single cell RNA-seq (scRNA-seq) data. Results: Here, we present an open source python package called FlowGrid that can integrate into the Scanpy workflow to perform clustering on very large scRNA-seq datasets. FlowGrid implements a fast density-based clustering algorithm originally designed for flow cytometry data analysis. We introduce a new automated parameter tuning procedure, and show that FlowGrid can achieve comparable clustering accuracy as state-of-the-art clustering algorithms but at a substantially reduced run time for very large single cell RNA-seq datasets. For example, FlowGrid can complete a one-hour clustering task for one million cells in about five min.
引用
收藏
页码:282 / 283
页数:2
相关论文
共 50 条
  • [21] Comparison of Gene Selection Methods for Clustering Single-cell RNA-seq Data
    Zhu, Xiaoshu
    Wang, Jianxin
    Li, Rongruan
    Peng, Xiaoqing
    CURRENT BIOINFORMATICS, 2023, 18 (01) : 1 - 11
  • [22] SC3: Consensus clustering of single-cell RNA-seq data
    Kiselev V.Y.
    Kirschner K.
    Schaub M.T.
    Andrews T.
    Yiu A.
    Chandra T.
    Natarajan K.N.
    Reik W.
    Barahona M.
    Green A.R.
    Hemberg M.
    Nature Methods, 2017, 14 (5) : 483 - 486
  • [23] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [24] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [25] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [26] FastCount: A Fast Gene Count Software for Single-cell RNA-seq Data
    Liu, Jinpeng
    Liu, Xinan
    Yu, Ye
    Wang, Chi
    Liu, Jinze
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [27] scMAE: a masked autoencoder for single-cell RNA-seq clustering
    Fang, Zhaoyu
    Zheng, Ruiqing
    Li, Min
    BIOINFORMATICS, 2024, 40 (01)
  • [28] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [29] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [30] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19