FlowGrid enables fast clustering of very large single-cell RNA-seq data

被引:4
|
作者
Fang, Xiunan [1 ]
Ho, Joshua W. K. [1 ,2 ]
机构
[1] Univ Hong Kong, Li Ka Shing Fac Med, Sch Biomed Sci, Hong Kong, Peoples R China
[2] Lab Data Discovery Hlth Ltd D24H, Hong Kong Sci Pk, Hong Kong, Peoples R China
关键词
D O I
10.1093/bioinformatics/btab521
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Scalable clustering algorithms are needed to analyze millions of cells in single cell RNA-seq (scRNA-seq) data. Results: Here, we present an open source python package called FlowGrid that can integrate into the Scanpy workflow to perform clustering on very large scRNA-seq datasets. FlowGrid implements a fast density-based clustering algorithm originally designed for flow cytometry data analysis. We introduce a new automated parameter tuning procedure, and show that FlowGrid can achieve comparable clustering accuracy as state-of-the-art clustering algorithms but at a substantially reduced run time for very large single cell RNA-seq datasets. For example, FlowGrid can complete a one-hour clustering task for one million cells in about five min.
引用
收藏
页码:282 / 283
页数:2
相关论文
共 50 条
  • [1] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [2] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282
  • [3] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [4] An active learning approach for clustering single-cell RNA-seq data
    Lin, Xiang
    Liu, Haoran
    Wei, Zhi
    Roy, Senjuti Basu
    Gao, Nan
    LABORATORY INVESTIGATION, 2022, 102 (03) : 227 - 235
  • [5] Single-cell RNA-seq data clustering by deep information fusion
    Ren, Liangrui
    Wang, Jun
    Li, Wei
    Guo, Maozu
    Yu, Guoxian
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2024, 23 (02) : 128 - 137
  • [6] Impact of similarity metrics on single-cell RNA-seq data clustering
    Kim, Taiyun
    Chen, Irene Rui
    Lin, Yingxin
    Wang, Andy Yi-Yang
    Yang, Jean Yee Hwa
    Yang, Pengyi
    BRIEFINGS IN BIOINFORMATICS, 2019, 20 (06) : 2316 - 2326
  • [7] A Global Similarity Learning for Clustering of Single-Cell RNA-Seq Data
    Zhu, Xiaoshu
    Guo, Lilu
    Xu, Yunpei
    Li, Hong-Dong
    Liao, Xingyu
    Wu, Fang-Xiang
    Peng, Xiaoqing
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 261 - 266
  • [8] SAFE-clustering: Single-cell Aggregated (from Ensemble) clustering for single-cell RNA-seq data
    Yang, Yuchen
    Huh, Ruth
    Culpepper, Houston W.
    Lin, Yuan
    Love, Michael I.
    Li, Yun
    BIOINFORMATICS, 2019, 35 (08) : 1269 - 1277
  • [9] Bubble: a fast single-cell RNA-seq imputation using an autoencoder constrained by bulk RNA-seq data
    Chen, Siqi
    Yan, Xuhua
    Zheng, Ruiqing
    Li, Min
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [10] Multiobjective Deep Clustering and Its Applications in Single-cell RNA-seq Data
    Wang, Yunhe
    Bian, Chuang
    Wong, Ka-Chun
    Li, Xiangtao
    Yang, Shengxiang
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5016 - 5027