Euclidean and Hermitian self-dual MDS codes over large finite fields

被引:84
作者
Kim, JL
Lee, YJ
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
[2] Smith Coll, Dept Math, Northampton, MA 01063 USA
关键词
MDS codes; self-dual codes;
D O I
10.1016/j.jcta.2003.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The first author constructed new extremal binary self-dual codes (IEEE Trans. Inform. Theory 47 (2001) 386-393) and new self-dual codes over GF(4) with the highest known minimum weights (IEEE Trans. Inform. Theory 47 (2001) 1575-1580). The method used was to build self-dual codes from a given self-dual code of a smaller length. In this paper, we develop a complete generalization of this method for the Euclidean and Hermitian self-dual codes over finite fields GF(q). Using this method we construct many Euclidean and Hermitian self-dual MDS (or near MDS) codes of length up to 12 over various finite fields GF(q), where q = 8, 9, 16, 25, 32, 41, 49, 53, 64, 81, and 128. Our results on the minimum weights of (near) MDS self-dual codes over large fields give a better bound than the Pless-Pierce bound obtained from a modified Gilbert-Varshamov bound. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 95
页数:17
相关论文
共 39 条
[1]  
[Anonymous], P S PURE MATH
[2]   Self-dual codes over Fp and weighing matrices [J].
Arasu, KT ;
Gulliver, TA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) :2051-2055
[3]   Nonbinary quantum stabilizer codes [J].
Ashikhmin, A ;
Knill, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :3065-3072
[4]  
Assmus E. F. Jr., 1969, Journal of Combinatorial Theory, Series A, V6, P122, DOI 10.1016/S0021-9800(69)80115-8
[5]   On self-dual codes over some prime fields [J].
Betsumiya, K ;
Georgiou, S ;
Gullivere, TA ;
Harada, M ;
Koukouvinos, C .
DISCRETE MATHEMATICS, 2003, 262 (1-3) :37-58
[6]   On type II codes over F4 [J].
Betsumiya, K ;
Gulliver, TA ;
Harada, M ;
Munemasa, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (06) :2242-2248
[7]   An enumeration of binary self-dual codes of length 32 [J].
Bilous, RT ;
van Rees, GHJ .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) :61-86
[8]   Quantum error correction via codes over GF (4) [J].
Calderbank, AR ;
Rains, EM ;
Shor, PW ;
Sloane, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (04) :1369-1387
[9]  
Cannon J., 1994, INTRO MAGMA
[10]   ENUMERATION OF SELF-DUAL CODES [J].
CONWAY, JH ;
PLESS, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1980, 28 (01) :26-53