MTDCNet: A 3D multi-threading dilated convolutional network for brain tumor automatic segmentation

被引:11
作者
Chen, Wankun [1 ]
Zhou, Weifeng [1 ]
Zhu, Ling [1 ]
Cao, Yuan [2 ]
Gu, Haiming [1 ]
Yu, Bin [2 ,3 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Math & Phys, Qingdao 266061, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Informat Sci & Technol, Sch Data Sci, Qingdao 266061, Peoples R China
[3] Univ Sci & Technol China, Sch Data Sci, Hefei 230027, Peoples R China
基金
中国国家自然科学基金;
关键词
Dilated connect; Multi -threading dilated convolution; Spatial pyramid convolution; Multi -threading adaptive pooling strategy; Brain tumor segmentation;
D O I
10.1016/j.jbi.2022.104173
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Glioma is one of the most threatening tumors and the survival rate of the infected patient is low. The automatic segmentation of the tumors by reliable algorithms can reduce diagnosis time. In this paper, a novel 3D multithreading dilated convolutional network (MTDC-Net) is proposed for the automatic brain tumor segmentation. First of all, a multi-threading dilated convolution (MTDC) strategy is introduced in the encoder part, so that the low dimensional structural features can be extracted and integrated better. At the same time, the pyramid matrix fusion (PMF) algorithm is used to integrate the characteristic structural information better. Secondly, in order to make the better use of context semantical information, this paper proposed a spatial pyramid convolution (SPC) operation. By using convolution with different kernel sizes, the model can aggregate more semantic information. Finally, the multi-threading adaptive pooling up-sampling (MTAU) strategy is used to increase the weight of semantic information, and improve the recognition ability of the model. And a pixel-based post-processing method is used to prevent the effects of error prediction. On the brain tumors segmentation challenge 2018 (BraTS2018) public validation dataset, the dice scores of MTDC-Net are 0.832, 0.892 and 0.809 for core, whole and enhanced of the tumor, respectively. On the BraTS2020 public validation dataset, the dice scores of MTDCNet are 0.833, 0.896 and 0.797 for the core tumor, whole tumor and enhancing tumor, respectively. Mass numerical experiments show that MTDC-Net is a state-of-the-art network for automatic brain tumor segmentation.
引用
收藏
页数:13
相关论文
共 56 条
  • [31] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [32] Long J., 2015, Fully convolutional networks for semantic segmentation, P3431
  • [33] Mazumdar I, 2020, Arxiv, DOI arXiv:1908.04250
  • [34] Mehta S, 2018, Arxiv, DOI arXiv:1803.06815
  • [35] The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)
    Menze, Bjoern H.
    Jakab, Andras
    Bauer, Stefan
    Kalpathy-Cramer, Jayashree
    Farahani, Keyvan
    Kirby, Justin
    Burren, Yuliya
    Porz, Nicole
    Slotboom, Johannes
    Wiest, Roland
    Lanczi, Levente
    Gerstner, Elizabeth
    Weber, Marc-Andre
    Arbel, Tal
    Avants, Brian B.
    Ayache, Nicholas
    Buendia, Patricia
    Collins, D. Louis
    Cordier, Nicolas
    Corso, Jason J.
    Criminisi, Antonio
    Das, Tilak
    Delingette, Herve
    Demiralp, Cagatay
    Durst, Christopher R.
    Dojat, Michel
    Doyle, Senan
    Festa, Joana
    Forbes, Florence
    Geremia, Ezequiel
    Glocker, Ben
    Golland, Polina
    Guo, Xiaotao
    Hamamci, Andac
    Iftekharuddin, Khan M.
    Jena, Raj
    John, Nigel M.
    Konukoglu, Ender
    Lashkari, Danial
    Mariz, Jose Antonio
    Meier, Raphael
    Pereira, Sergio
    Precup, Doina
    Price, Stephen J.
    Raviv, Tammy Riklin
    Reza, Syed M. S.
    Ryan, Michael
    Sarikaya, Duygu
    Schwartz, Lawrence
    Shin, Hoo-Chang
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) : 1993 - 2024
  • [36] Milletari F, 2016, Arxiv, DOI [arXiv:1606.04797, DOI 10.48550/ARXIV.1606.04797]
  • [37] An Intensity Variation Pattern Analysis Based Machine Learning Classifier for MRI Brain Tumor Detection
    Murugesan, Muthalakshmi
    Ragavan, Dhanasekaran
    [J]. CURRENT MEDICAL IMAGING, 2019, 15 (06) : 555 - 564
  • [38] RescueNet: An unpaired GAN for brain tumor segmentation
    Nema, Shubhangi
    Dudhane, Akshay
    Murala, Subrahmanyam
    Naidu, Srivatsava
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 55 (55)
  • [39] 3D-ESPNet with Pyramidal Refinement for Volumetric Brain Tumor Image Segmentation
    Nuechterlein, Nicholas
    Mehta, Sachin
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 245 - 253
  • [40] Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
    Pereira, Sergio
    Pinto, Adriano
    Alves, Victor
    Silva, Carlos A.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) : 1240 - 1251