Cryptanalysis and Improvement of DeepPAR: Privacy-Preserving and Asynchronous Deep Learning for Industrial IoT

被引:9
|
作者
Chen, Yange [1 ,2 ]
He, Suyu [3 ]
Wang, Baocang [4 ,5 ]
Duan, Pu [6 ]
Zhang, Benyu [6 ]
Hong, Zhiyong [7 ,8 ]
Ping, Yuan [2 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[2] Xuchang Univ, Sch Informat Engn, Xuchang 461000, Peoples R China
[3] Shanghai Jiyin Network Technol Co Ltd, Backend Engn Res & Dev Dept, Shanghai 200000, Peoples R China
[4] Xidian Univ, Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[5] Xidian Univ, Cryptog Res Ctr, Xian 710071, Peoples R China
[6] Ant Grp, Secure Collaborat Intelligence Lab, Hangzhou 310000, Peoples R China
[7] Wuyi Univ, Fac Intelligence Manufacture, Jiangmen 529020, Peoples R China
[8] Wuyi Univ, Yue Gang Ao Ind Big Data Collaborat Innovat Ctr, Jiangmen 529020, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2022年 / 9卷 / 21期
基金
中国国家自然科学基金;
关键词
Deep learning; Servers; Training; Privacy; Industrial Internet of Things; Production; Homomorphic encryption; Asynchronous deep learning; homomorphic encryption; privacy preserving; proxy re-encryption; ENCRYPTION; PROTOCOLS;
D O I
10.1109/JIOT.2022.3181665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Industrial Internet of Things (IIoT) is gradually changing the mode of traditional industries with the rapid development of big data. Besides, thanks to the development of deep learning, it can be used to extract useful knowledge from the large amount of data in the IIoT to help improve production and service quality. However, the lack of large-scale data sets will lead to low performance and overfitting of learning models. Therefore, federated deep learning with distributed data sets has been proposed. Nevertheless, the research has shown that federated learning can also leak the private data of participants. In IIoT, once the privacy of participants in some special application scenarios is leaked, it will directly affect national security and people's lives, such as smart power grid and smart medical care. At present, several privacy-preserving federated learning schemes have been proposed to preserve data privacy of participants, but security issues prevent them from being fully applied. In this article, we analyze the security of the DeepPAR scheme proposed by Zhang et al., and point out that the scheme is insecure in the re-encryption key generation process, which will cause the leakage of the secret key of participants or the proxy server. In addition, the scheme is not resistant to collusion attacks between the parameter server and participants. Based on this, we propose an improved scheme. The security proof shows that the improved scheme solves the security problem of the original scheme and is resistant to collusion attacks. Finally, the security and accuracy of the scheme is illustrated by performance analysis.
引用
收藏
页码:21958 / 21970
页数:13
相关论文
共 50 条
  • [41] Achieving Privacy-Preserving DSSE for Intelligent IoT Healthcare System
    Liu, Yaru
    Yu, Jia
    Fan, Jianxi
    Vijayakumar, Pandi
    Chang, Victor
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 2010 - 2020
  • [42] VPPFL: Verifiable Privacy-Preserving Federated Learning in Cloud Environment
    Wang, Huiyong
    Yang, Tengfei
    Ding, Yong
    Tang, Shijie
    Wang, Yujue
    IEEE ACCESS, 2024, 12 : 151998 - 152008
  • [43] Privacy-Preserving Machine Learning on Apache Spark
    Brito, Claudia V.
    Ferreira, Pedro G.
    Portela, Bernardo L.
    Oliveira, Rui C.
    Paulo, Joao T.
    IEEE ACCESS, 2023, 11 : 127907 - 127930
  • [44] Privacy-preserving healthcare data in IoT: a synergistic approach with deep learning and blockchain
    Bezanjani, Behnam Rezaei
    Ghafouri, Seyyed Hamid
    Gholamrezaei, Reza
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04)
  • [45] Cryptanalysis of a Privacy-Preserving Aggregation Protocol
    Datta, Amit
    Joye, Marc
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2017, 14 (06) : 693 - 694
  • [46] PADL: Privacy-Aware and Asynchronous Deep Learning for IoT Applications
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Liu, Sen
    Liu, Zhe
    Lu, Rongxing
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (08): : 6955 - 6969
  • [47] Privacy-Preserving Collaborative Deep Learning With Unreliable Participants
    Zhao, Lingchen
    Wang, Qian
    Zou, Qin
    Zhang, Yan
    Chen, Yanjiao
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2020, 15 : 1486 - 1500
  • [48] PDLM: Privacy-Preserving Deep Learning Model on Cloud with Multiple Keys
    Ma, Xindi
    Ma, Jianfeng
    Li, Hui
    Jiang, Qi
    Gao, Sheng
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2021, 14 (04) : 1251 - 1263
  • [49] Privacy-preserving deep learning in medical informatics: applications, challenges, and solutions
    Naresh, Vankamamidi S.
    Thamarai, M.
    Allavarpu, V. V. L. Divakar
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (SUPPL 1) : 1199 - 1241
  • [50] Privacy-Preserving Deep Learning Based on Multiparty Secure Computation: A Survey
    Zhang, Qiao
    Xin, Chunsheng
    Wu, Hongyi
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10412 - 10429