Cryptanalysis and Improvement of DeepPAR: Privacy-Preserving and Asynchronous Deep Learning for Industrial IoT

被引:9
|
作者
Chen, Yange [1 ,2 ]
He, Suyu [3 ]
Wang, Baocang [4 ,5 ]
Duan, Pu [6 ]
Zhang, Benyu [6 ]
Hong, Zhiyong [7 ,8 ]
Ping, Yuan [2 ]
机构
[1] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
[2] Xuchang Univ, Sch Informat Engn, Xuchang 461000, Peoples R China
[3] Shanghai Jiyin Network Technol Co Ltd, Backend Engn Res & Dev Dept, Shanghai 200000, Peoples R China
[4] Xidian Univ, Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[5] Xidian Univ, Cryptog Res Ctr, Xian 710071, Peoples R China
[6] Ant Grp, Secure Collaborat Intelligence Lab, Hangzhou 310000, Peoples R China
[7] Wuyi Univ, Fac Intelligence Manufacture, Jiangmen 529020, Peoples R China
[8] Wuyi Univ, Yue Gang Ao Ind Big Data Collaborat Innovat Ctr, Jiangmen 529020, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2022年 / 9卷 / 21期
基金
中国国家自然科学基金;
关键词
Deep learning; Servers; Training; Privacy; Industrial Internet of Things; Production; Homomorphic encryption; Asynchronous deep learning; homomorphic encryption; privacy preserving; proxy re-encryption; ENCRYPTION; PROTOCOLS;
D O I
10.1109/JIOT.2022.3181665
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Industrial Internet of Things (IIoT) is gradually changing the mode of traditional industries with the rapid development of big data. Besides, thanks to the development of deep learning, it can be used to extract useful knowledge from the large amount of data in the IIoT to help improve production and service quality. However, the lack of large-scale data sets will lead to low performance and overfitting of learning models. Therefore, federated deep learning with distributed data sets has been proposed. Nevertheless, the research has shown that federated learning can also leak the private data of participants. In IIoT, once the privacy of participants in some special application scenarios is leaked, it will directly affect national security and people's lives, such as smart power grid and smart medical care. At present, several privacy-preserving federated learning schemes have been proposed to preserve data privacy of participants, but security issues prevent them from being fully applied. In this article, we analyze the security of the DeepPAR scheme proposed by Zhang et al., and point out that the scheme is insecure in the re-encryption key generation process, which will cause the leakage of the secret key of participants or the proxy server. In addition, the scheme is not resistant to collusion attacks between the parameter server and participants. Based on this, we propose an improved scheme. The security proof shows that the improved scheme solves the security problem of the original scheme and is resistant to collusion attacks. Finally, the security and accuracy of the scheme is illustrated by performance analysis.
引用
收藏
页码:21958 / 21970
页数:13
相关论文
共 50 条
  • [1] DeepPAR and DeepDPA: Privacy Preserving and Asynchronous Deep Learning for Industrial IoT
    Zhang, Xiaoyu
    Chen, Xiaofeng
    Liu, Joseph K.
    Xiang, Yang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (03) : 2081 - 2090
  • [2] Privacy-Preserving Asynchronous Grouped Federated Learning for IoT
    Zhang, Tao
    Song, Anxiao
    Dong, Xuewen
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07): : 5511 - 5523
  • [3] Privacy-Preserving Machine Learning Training in IoT Aggregation Scenarios
    Zhu, Liehuang
    Tang, Xiangyun
    Shen, Meng
    Gao, Feng
    Zhang, Jie
    Du, Xiaojiang
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (15) : 12106 - 12118
  • [4] Privacy-Preserving Deep Learning and Inference
    Riazi, M. Sadegh
    Koushanfar, Farinaz
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD) DIGEST OF TECHNICAL PAPERS, 2018,
  • [5] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934
  • [6] Privacy-Preserving Zero-Sum-Path Evaluation of Decision Tress in Postquantum Industrial IoT
    Kjamilji, Artrim
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (08) : 10178 - 10191
  • [7] Privacy-preserving image multi-classification deep learning model in robot system of industrial IoT
    Chen, Yange
    Ping, Yuan
    Zhang, Zhili
    Wang, Baocang
    He, SuYu
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (10) : 4677 - 4694
  • [8] Privacy-Preserving Federated Deep Learning With Irregular Users
    Xu, Guowen
    Li, Hongwei
    Zhang, Yun
    Xu, Shengmin
    Ning, Jianting
    Deng, Robert H.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2022, 19 (02) : 1364 - 1381
  • [9] Privacy-Preserving Deep Learning
    Shokri, Reza
    Shmatikov, Vitaly
    CCS'15: PROCEEDINGS OF THE 22ND ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2015, : 1310 - 1321
  • [10] Privacy-Preserving Deep Learning on Big Data in Cloud
    Fan, Yongkai
    Zhang, Wanyu
    Bai, Jianrong
    Lei, Xia
    Li, Kuanching
    CHINA COMMUNICATIONS, 2023, 20 (11) : 176 - 186