Phonon hydrodynamics in two-dimensional materials

被引:432
作者
Cepellotti, Andrea [1 ,2 ]
Fugallo, Giorgia [1 ,3 ]
Paulatto, Lorenzo [3 ]
Lazzeri, Michele [3 ]
Mauri, Francesco [3 ]
Marzari, Nicola [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Theory & Simulat Mat THEOS, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Natl Ctr Computat Design & Discovery Novel Mat MA, CH-1015 Lausanne, Switzerland
[3] Univ Paris 06, Sorbonne Univ, UMR CNRS 7590, Musem Natl Hist Nat,IMPMC,IRD UMR 206, F-75005 Paris, France
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
瑞士国家科学基金会;
关键词
2ND SOUND; THERMAL-CONDUCTIVITY; GRAPHENE; MODEL;
D O I
10.1038/ncomms7400
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three- dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.
引用
收藏
页数:7
相关论文
共 41 条
[1]   2ND SOUND IN SOLID HELIUM [J].
ACKERMAN, CC ;
BERTMAN, B ;
FAIRBANK, HA ;
GUYER, RA .
PHYSICAL REVIEW LETTERS, 1966, 16 (18) :789-&
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[4]   GREEN-FUNCTION APPROACH TO LINEAR RESPONSE IN SOLIDS [J].
BARONI, S ;
GIANNOZZI, P ;
TESTA, A .
PHYSICAL REVIEW LETTERS, 1987, 58 (18) :1861-1864
[5]   Lattice thermal conductivity of silicon from empirical interatomic potentials [J].
Broido, DA ;
Ward, A ;
Mingo, N .
PHYSICAL REVIEW B, 2005, 72 (01)
[6]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[7]  
Dal Corso A., 2013, PSLIBRARY
[8]   From kinetic to collective behavior in thermal transport on semiconductors and semiconductor nanostructures [J].
de Tomas, C. ;
Cantarero, A. ;
Lopeandia, A. F. ;
Alvarez, F. X. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (16)
[9]   ANHARMONIC PHONON LIFETIMES IN SEMICONDUCTORS FROM DENSITY-FUNCTIONAL PERTURBATION-THEORY [J].
DEBERNARDI, A ;
BARONI, S ;
MOLINARI, E .
PHYSICAL REVIEW LETTERS, 1995, 75 (09) :1819-1822
[10]   Ab initio calculation of the linewidth of various phonon modes in germanium and silicon -: art. no. 144304 [J].
Deinzer, G ;
Birner, G ;
Strauch, D .
PHYSICAL REVIEW B, 2003, 67 (14)