Nanodiamonds as pH-switchable oxidation and reduction catalysts with enzyme-like activities for immunoassay and antioxidant applications

被引:51
作者
Chen, T. M. [1 ]
Tian, X. M. [2 ]
Huang, L. [3 ]
Xiao, J. [1 ]
Yang, G. W. [1 ]
机构
[1] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Sch Mat Sci & Engn, Nanotechnol Res Ctr,Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangzhou Med Univ, Dept Biomed Engn, Guangzhou 510182, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Zhongshan Sch Med, Dept Histol & Embryol, Guangzhou 510080, Guangdong, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
PEROXIDASE-LIKE ACTIVITY; MIMICKING HORSERADISH-PEROXIDASE; FLUORESCENT NANODIAMONDS; DETONATION NANODIAMONDS; OXIDE NANOPARTICLES; CO3O4; NANOPARTICLES; ACTIVE-SITES; 1,3-DIPHENYLISOBENZOFURAN; IDENTIFICATION; NITRIDE;
D O I
10.1039/c7nr05629j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanodiamonds (NDs) have recently become a focus of interest from the viewpoints of both science and technology. Their intriguing properties make them suitable as biologically active substrates, in biosensor applications as well as diagnostic and therapeutic biomedical imaging probes. Here, we demonstrate that NDs, as oxidation and reduction catalysts, possess intrinsic enzyme mimetic properties of oxidase, peroxidase and catalase, and these behaviors can be switched by modulating the pH value. NDs not only catalyze the reduction of oxygen (O-2) and hydrogen peroxide (H2O2) at acidic pH, but also catalyze the dismutation decomposition of H2O2 to produce O-2 at alkaline pH. It was proposed that the molecular mechanism of their peroxidase-like activity is electron-transfer acceleration, the source of which is likely derived from oxygen containing functional groups on their surface. Based on the color reaction, a nanodiamond-based enzyme linked immunosorbent assay (ELISA) was established for the detection of immunoglobulin G (IgG). Surprisingly, NDs display an excellent antioxidant activity due to the protective effect against H2O2-induced cellular oxidative damage. These findings make NDs a promising enzyme mimetic candidate and expand their applications in biocatalysis, bioassays and nano-biomedicine.
引用
收藏
页码:15673 / 15684
页数:12
相关论文
共 48 条
[1]   Formation of color centers in nanodiamonds by plasma assisted diffusion of impurities from the growth substrate [J].
Aharonovich, Igor ;
Zhou, Chunyuan ;
Stacey, Alastair ;
Treussart, Francois ;
Roch, Jean-Francois ;
Prawer, Steven .
APPLIED PHYSICS LETTERS, 2008, 93 (24)
[2]   V2O5 Nanowires with an Intrinsic Peroxidase-Like Activity [J].
Andre, Rute ;
Natalio, Filipe ;
Humanes, Madalena ;
Leppin, Jana ;
Heinze, Katja ;
Wever, Ron ;
Schroeder, H. -C. ;
Mueller, Werner E. G. ;
Tremel, Wolfgang .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (03) :501-509
[3]   Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles [J].
Asati, Atul ;
Santra, Santimukul ;
Kaittanis, Charalambos ;
Nath, Sudip ;
Perez, J. Manuel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (13) :2308-2312
[4]   High yield fabrication of fluorescent nanodiamonds [J].
Boudou, Jean-Paul ;
Curmi, Patrick A. ;
Jelezko, Fedor ;
Wrachtrup, Joerg ;
Aubert, Pascal ;
Sennour, Mohamed ;
Balasubramanian, Gopalakrischnan ;
Reuter, Rolf ;
Thorel, Alain ;
Gaffet, Eric .
NANOTECHNOLOGY, 2009, 20 (23)
[5]   Mass production and dynamic imaging of fluorescent nanodiamonds [J].
Chang, Yi-Ren ;
Lee, Hsu-Yang ;
Chen, Kowa ;
Chang, Chun-Chieh ;
Tsai, Dung-Sheng ;
Fu, Chi-Cheng ;
Lim, Tsong-Shin ;
Tzeng, Yan-Kai ;
Fang, Chia-Yi ;
Han, Chau-Chung ;
Chang, Huan-Cheng ;
Fann, Wunshain .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :284-288
[6]   Cubic boron nitride with an intrinsic peroxidase-like activity [J].
Chen, T. M. ;
Xiao, J. ;
Yang, G. W. .
RSC ADVANCES, 2016, 6 (74) :70124-70132
[7]   Nanodiamond Therapeutic Delivery Agents Mediate Enhanced Chemoresistant Tumor Treatment [J].
Chow, Edward K. ;
Zhang, Xue-Qing ;
Chen, Mark ;
Lam, Robert ;
Robinson, Erik ;
Huang, Houjin ;
Schaffer, Daniel ;
Osawa, Eiji ;
Goga, Andrei ;
Ho, Dean .
SCIENCE TRANSLATIONAL MEDICINE, 2011, 3 (73)
[8]   On the history of the discovery of nanodiamond synthesis [J].
Danilenko, VV .
PHYSICS OF THE SOLID STATE, 2004, 46 (04) :595-599
[9]   Co3O4 Nanoparticles with Multi-Enzyme Activities and Their Application in Immunohistochemical Assay [J].
Dong, Jinlai ;
Song, Lina ;
Yin, Jun-Jie ;
He, Weiwei ;
Wu, Yihang ;
Gu, Ning ;
Zhang, Yu .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (03) :1959-1970
[10]   Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles [J].
Fan, Jia ;
Yin, Jun-Jie ;
Ning, Bo ;
Wu, Xiaochun ;
Hu, Ye ;
Ferrari, Mauro ;
Anderson, Gregory J. ;
Wei, Jingyan ;
Zhao, Yuliang ;
Nie, Guangjun .
BIOMATERIALS, 2011, 32 (06) :1611-1618