IRON IN MICROBIAL METABOLISMS

被引:190
|
作者
Konhauser, Kurt O. [1 ]
Kappler, Andreas [2 ]
Roden, Eric E. [3 ]
机构
[1] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2E3, Canada
[2] Univ Tubingen, Ctr Appl Geosci, D-72076 Tubingen, Germany
[3] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA
基金
加拿大自然科学与工程研究理事会;
关键词
iron; bacteria; metabolism; oxidation; reduction; autotrophic bacteria; heterotrophic bacteria; EXTRACELLULAR ELECTRON-TRANSFER; FERROUS IRON; FE(II)-OXIDIZING BACTERIA; SIDEROPHORE PRODUCTION; REDUCTION; SEDIMENTS; FE(III); GROWTH; ENVIRONMENTS; DEPOSITION;
D O I
10.2113/gselements.7.2.89
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Microbes are intimately involved On the Iron cycle. First, acquisition of iron by microorganisms for biochemical requirements is a key process in the iron cycle in oxygenated, circumneutral pill environments, where the solubility of Fe(III) (oxyhydr)oxides is extremely low. Second, a number of aerobic (using O-2) and anaerobic (living in the absence of O-2) autotrophic bacteria gain energy for growth from the oxidation of dissolved and solid-phase Fe(II) compounds to Fe(III) (oxyhydr)oxides. Third, heterotrophic Fe(III)-reducing bacteria close the chemical loop by reducing solid-phase Fe(III) minerals back to dissolved and solid-phase Fe(II). Together these metabolic processes control the partitioning of the Earth's fourth most abundant crustal element, and they are additionally tied to the cycling of several major nutrients (e.g. carbon, oxygen, nitrogen, sulfur) and trace elements (e.g. phosphorus, nickel) in modern and ancient environments.
引用
收藏
页码:89 / 93
页数:5
相关论文
共 50 条
  • [1] Plausible microbial metabolisms on Mars
    Nixon, Sophie L.
    Cousins, Claire R.
    Cockell, Charles S.
    ASTRONOMY & GEOPHYSICS, 2013, 54 (01) : 13 - 16
  • [2] Bioenergetic challenges of microbial iron metabolisms
    Bird, Lina J.
    Bonnefoy, Violaine
    Newman, Dianne K.
    TRENDS IN MICROBIOLOGY, 2011, 19 (07) : 330 - 340
  • [3] Microbial iron(II) oxidation in littoral freshwater lake sediment: the potential for competition between phototrophic vs. nitrate-reducing iron(II)-oxidizers
    Melton, E. D.
    Schmidt, C.
    Kappler, A.
    FRONTIERS IN MICROBIOLOGY, 2012, 3
  • [4] Microbial iron-redox cycling in subsurface environments
    Roden, Eric E.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2012, 40 : 1249 - 1256
  • [5] Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal
    Lu, Yongsheng
    Xu, Lu
    Shu, Weikang
    Zhou, Jizhi
    Chen, Xueping
    Xu, Yunfeng
    Qian, Guangren
    BIORESOURCE TECHNOLOGY, 2017, 224 : 34 - 40
  • [6] Repeated Anaerobic Microbial Redox Cycling of Iron
    Coby, Aaron J.
    Picardal, Flynn
    Shelobolina, Evgenya
    Xu, Huifang
    Roden, Eric E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (17) : 6036 - 6042
  • [7] Enhancing iron biogeochemical cycling for canga ecosystem restoration: insights from microbial stimuli
    da Silva, Rayara do Socorro Souza
    Cardoso, Aline Figueiredo
    Angelica, Romulo Simoes
    Bitencourt, Jose Augusto P.
    Moreira, Julio Cezar Fornazier
    Lucheta, Adriano Reis
    Prado, Isabelle Goncalves de Oliveira
    Candela, Dalber Ruben Sanchez
    Gastauer, Markus
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [8] Effect of Photoreduction of Semiconducting Iron Mineral-Goethite on Microbial Community in the Marine Euphotic Zone
    Liu, Jia
    Ge, Xiao
    Ding, Hongrui
    Yang, Shanshan
    Sun, Yuan
    Li, Yanzhang
    Ji, Xiang
    Li, Yan
    Lu, Anhuai
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [9] Microbial reduction of nitrate in the presence of zero-valent iron
    Zhang, Yiping
    Douglas, Grant B.
    Kaksonen, Anna H.
    Cui, Lili
    Ye, Zhengfang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 646 : 1195 - 1203
  • [10] Microbial Leaching of Iron from Hematite: Direct or Indirect Elution
    Aneksampant, Apichaya
    Nakashima, Kazunori
    Kawasaki, Satoru
    MATERIALS TRANSACTIONS, 2020, 61 (02) : 396 - 401