SOME ALGEBRAIC RELATIONS ON INTEGER SEQUENCES INVOLVING OBLONG AND BALANCING NUMBERS

被引:0
作者
Tekcan, Ahmet [1 ]
Ozkoc, Arzu [2 ]
Erasik, Meltem E. [1 ]
机构
[1] Uludag Univ, Fac Sci, Dept Math, Bursa, Turkey
[2] Duzce Univ, Fac Arts & Sci, Dept Math, Duzce, Turkey
关键词
Fibonacci numbers; Lucas numbers; Pell numbers; oblong numbers; balancing numbers; binary linear recurrences; circulant matrix; spectral norm; simple continued fraction expansion; cross-ratio;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 21 条
  • [11] Melham R., 1999, PORT MATH, V56, P309
  • [12] Mollin RA, 2008, DISCRETE MATH ITS AP
  • [13] Ogilvy CS, 1988, EXCURSIONS NUMBER TH
  • [14] Olajos P, 2010, ANN MATH INFORM, V37, P125
  • [15] Panda GK, 2011, BULL INST MATH ACAD, V6, P41
  • [16] Panda G.K., 2005, INT J MATH MATH SCI, V2005, P1189
  • [17] Ray PK., 2009, THESIS ROURKELA NATL
  • [18] Ribenboim P., 2000, POPULAR LECT NUMBER
  • [19] Santana S.F., 2006, Missouri Journal of Mathematical Science, V18, P33
  • [20] [No title captured]