SOME ALGEBRAIC RELATIONS ON INTEGER SEQUENCES INVOLVING OBLONG AND BALANCING NUMBERS

被引:0
作者
Tekcan, Ahmet [1 ]
Ozkoc, Arzu [2 ]
Erasik, Meltem E. [1 ]
机构
[1] Uludag Univ, Fac Sci, Dept Math, Bursa, Turkey
[2] Duzce Univ, Fac Arts & Sci, Dept Math, Duzce, Turkey
关键词
Fibonacci numbers; Lucas numbers; Pell numbers; oblong numbers; balancing numbers; binary linear recurrences; circulant matrix; spectral norm; simple continued fraction expansion; cross-ratio;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k >= 0 be an integer. Oblong (pronic) numbers are numbers of the form O-k = k(k+1). In this work, we set a new integer sequence B = B-n(k) defined as B-0 = 0, B-1 = 1 and B-n = O-k Bn-1 - Bn-2 for n >= 2 and then derived some algebraic relations on it. Later, we give some new results on balancing numbers via oblong numbers.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 21 条
  • [1] [Anonymous], 2009, P 11 INT C FIB NUMB
  • [2] Behera A, 1999, FIBONACCI QUART, V37, P98
  • [3] Conway J. H., 1996, The Book of Numbers
  • [4] Davis PJ., 1979, CIRCULANT MATRICES
  • [5] Edward HM, 1977, GRADUATE TEXTS MATH, V50
  • [6] Hardy HW60 G. H., 1960, An Introduction to the Theory of Numbers, V4th
  • [7] Hilton P, 1997, MATH REFLECTIONS ROO
  • [8] Keskin R, 2012, J INTEGER SEQ, V15
  • [9] KOSHY T., 2001, PUR AP M-WI
  • [10] Liptai K, 2004, FIBONACCI QUART, V42, P330