15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3

被引:297
作者
Ko, Hyun-Seok
Lee, Jin-Wook
Park, Nam-Gyu [1 ]
机构
[1] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea
基金
新加坡国家研究基金会;
关键词
LEAD IODIDE PEROVSKITES; SIZE;
D O I
10.1039/c5ta00658a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report here an efficient method for preparing high efficiency CH3NH3PbI3 perovskite solar cells under high relative humidity, where the morphology of PbI2 was found to be of crucial importance. CH3NH3PbI3 was formed on a mesoporous TiO2 layer by a two-step spin coating method. During the first-step spin-coating procedure to form a PbI2 layer, an FTO glass substrate was pre-heated at temperatures ranging from room temperature (without pre-heating) to 60 degrees C. An average power conversion efficiency (PCE) of 11.16% was achieved without pre-heating, which was improved to 15.31% as the temperature of the substrate (T-sub) was raised to 50 degrees C. The pre-heated substrate led to higher photocurrent and voltage than the non-pre-heated one. When Tsub increased to 60 degrees C, the PCE declined to 10.49% due to the large portion of unreacted PbI2. Compared to the non-pre-heated substrate, unreacted PbI2 was present on the pre-heated substrates after the second-step spin-coating of CH3NH3I as confirmed by X-ray diffraction and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) depth profile analyses. The improved crystallinity of PbI2 induced by substrate pre-heating was responsible for incomplete conversion of PbI2 to CH3NH3PbI3. Nevertheless, the increase in photocurrent and voltage by pre-heating was attributed to better pore filling and surface coverage of the perovskite layer, as observed by focused ion beam assisted scanning electron microscopy (FIB-SEM) images, which was associated with the morphology of the PbI2 layer. According to a study on the effect of CH3NH3PbI3 thickness controlled by the concentration of PbI2, the substrate temperature was found to play a predominant role in determining the photovoltaic performance rather than thickness. A best PCE of 15.76% was achieved along with a photocurrent density of 21.27 mA cm(-2), a voltage of 1.033 V and a fill factor of 0.718 from the perovskite solar cell prepared under 50% relative humidity.
引用
收藏
页码:8808 / 8815
页数:8
相关论文
共 22 条
  • [1] Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications
    Baikie, Tom
    Fang, Yanan
    Kadro, Jeannette M.
    Schreyer, Martin
    Wei, Fengxia
    Mhaisalkar, Subodh G.
    Graetzel, Michael
    White, Tim J.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (18) : 5628 - 5641
  • [2] Low-temperature processed meso-superstructured to thin-film perovskite solar cells
    Ball, James M.
    Lee, Michael M.
    Hey, Andrew
    Snaith, Henry J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1739 - 1743
  • [3] Sequential deposition as a route to high-performance perovskite-sensitized solar cells
    Burschka, Julian
    Pellet, Norman
    Moon, Soo-Jin
    Humphry-Baker, Robin
    Gao, Peng
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    [J]. NATURE, 2013, 499 (7458) : 316 - +
  • [4] Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells
    Chen, Qi
    Zhou, Huanping
    Song, Tze-Bin
    Luo, Song
    Hong, Ziruo
    Duan, Hsin-Sheng
    Dou, Letian
    Liu, Yongsheng
    Yang, Yang
    [J]. NANO LETTERS, 2014, 14 (07) : 4158 - 4163
  • [5] Bulk crystal growth of hybrid perovskite material CH3NH3PbI3
    Dang, Yangyang
    Liu, Yang
    Sun, Youxuan
    Yuan, Dongsheng
    Liu, Xiaolong
    Lu, Weiqun
    Liu, Guangfeng
    Xia, Haibing
    Tao, Xutang
    [J]. CRYSTENGCOMM, 2015, 17 (03): : 665 - 670
  • [6] Im JH, 2014, NAT NANOTECHNOL, V9, P927, DOI [10.1038/nnano.2014.181, 10.1038/NNANO.2014.181]
  • [7] Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3
    Im, Jeong-Hyeok
    Kim, Hui-Seon
    Park, Nam-Gyu
    [J]. APL MATERIALS, 2014, 2 (08):
  • [8] 6.5% efficient perovskite quantum-dot-sensitized solar cell
    Im, Jeong-Hyeok
    Lee, Chang-Ryul
    Lee, Jin-Wook
    Park, Sang-Won
    Park, Nam-Gyu
    [J]. NANOSCALE, 2011, 3 (10) : 4088 - 4093
  • [9] Compositional engineering of perovskite materials for high-performance solar cells
    Jeon, Nam Joong
    Noh, Jun Hong
    Yang, Woon Seok
    Kim, Young Chan
    Ryu, Seungchan
    Seo, Jangwon
    Seok, Sang Il
    [J]. NATURE, 2015, 517 (7535) : 476 - +
  • [10] Jeon NJ, 2014, NAT MATER, V13, P897, DOI [10.1038/NMAT4014, 10.1038/nmat4014]