An efficient problem-independent hardware implementation of genetic algorithms

被引:24
作者
Nedjah, Nadia
Mourelle, Luiza de Macedo [1 ]
机构
[1] Univ Estado Rio De Janeiro, Fac Engn, Dept Syst Engn & Computat, Rio De Janeiro, Brazil
[2] Univ Estado Rio De Janeiro, Fac Engn, Dept Elect & Telecommun Engn, Rio De Janeiro, Brazil
关键词
genetic algorithms; neural network; hardware;
D O I
10.1016/j.neucom.2006.11.032
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a massively parallel architecture for hardware implementation of genetic algorithms. This design is quite innovative as it provides a viable solution to the fitness computation problem, which depends heavily on the problem-specific knowledge. The proposed architecture is completely independent of such specifics. It implements the fitness computation using a neural network. The hardware implementation of the used neural network is stochastic and thus minimise the required hardware area without much increase in response time. Last but not least, we demonstrate the characteristics of the proposed hardware and compare it to existing ones. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:88 / 94
页数:7
相关论文
共 12 条
[1]  
Bade S. L, 1994, IEEE WORKSH FPGAS CU, P189
[2]  
BLAND IM, 1996, P 1 ON LIN WORKSH SO, P268
[3]   Stochastic neural computation I: Computational elements [J].
Brown, BD ;
Card, HC .
IEEE TRANSACTIONS ON COMPUTERS, 2001, 50 (09) :891-905
[4]  
DIACONIS P, 1985, ANN STAT, V13, P845, DOI 10.1214/aos/1176349634
[5]  
Gaines B R, 1969, Advances in information systems science, P37, DOI [10.1109/12.954505, 10.1007/978-1-4899-5841-9_2, DOI 10.1007/978-1-4899-5841-9_2]
[6]  
LIU J, 1993, THESIS U N CAROLINA
[7]   Synthesis of a systolic array genetic algorithm [J].
Megson, GM ;
Bland, IM .
FIRST MERGED INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM & SYMPOSIUM ON PARALLEL AND DISTRIBUTED PROCESSING, 1998, :316-320
[8]  
MICHALEWICS Z, 1994, GENETIC ALGORITHMS D
[9]  
Nedjah N, 2003, LECT NOTES COMPUT SC, V2687, P17
[10]  
SCOTT SD, 1995, P ACM SIGDA 3 INT S, P53, DOI DOI 10.1109/FPGA.1995.241945