Repeated low energy impact behaviour of self-reinforced polypropylene composites

被引:34
作者
Aurrekoetxea, J. [1 ]
Sarrionandia, M. [1 ]
Mateos, M. [1 ]
Aretxabaleta, L. [1 ]
机构
[1] Mondragon Unibertsitatea, Mech & Ind Prod Dept, Arrasate Mondragon 20500, Spain
关键词
Polymer-matrix composite (PMCs); Self-reinforced; Impact loading; Life prediction; SINGLE-POLYMER COMPOSITES; MECHANICAL-PROPERTIES; HOT-COMPACTION; TEMPERATURE; PERFORMANCE; TAPES;
D O I
10.1016/j.polymertesting.2010.11.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The repeated impact behaviour of self-reinforced polypropylene composite has been characterised by tensile impact and instrumented falling weight tests. The nature of the tapes is highly anisotropic with strain hardening failure. Plastic deformation of the tape is the dominant mechanism, and the resulting penetration mode is a highly localised "star"-shaped hole. Damage and perforation thresholds are 5 J and 31.4 J respectively. Impact fatigue life exceeds 500 impact events up to 13 J, but drops sharply for 14 J. Strain-hardening is the origin of the trend of peak load increase and plastic deformation decrease with impact events. As a consequence, the amount of energy absorbed by each impact is reduced. However, when tape breaking takes place the absorbed energy increases up to perforation. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:216 / 221
页数:6
相关论文
共 50 条
[31]   Morphology-Property-Relationship of Thermo-Mechanically Graded Self-Reinforced Polypropylene Composites [J].
Heim, H. -P. ;
Rohde, B. ;
Ries, A. .
PROCEEDINGS OF PPS-29: THE 29TH INTERNATIONAL CONFERENCE OF THE POLYMER - CONFERENCE PAPERS, 2014, 1593 :776-779
[32]   Multivariable dependency of thermal shrinkage in highly aligned polypropylene tapes for self-reinforced polymer composites [J].
Diaz, Jairo A. ;
Youngblood, Jeffrey P. .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 90 :771-777
[33]   Commercial self-reinforced composites: A comparative study [J].
Santos, Rafael A. M. ;
Gorbatikh, Larissa ;
Swolfs, Yentl .
COMPOSITES PART B-ENGINEERING, 2021, 223
[34]   The incorporation of graphene to enhance mechanical properties of polypropylene self-reinforced polymer composites [J].
Wang J. ;
Song F. ;
Ding Y. ;
Shao M. .
Wang, Jian (wjj_0107@163.com), 1600, Elsevier Ltd (195)
[35]   Development of a continuous manufacturing process for self-reinforced composites using multi-step highly drawn polypropylene tapes [J].
Kim, Dong Woo ;
Kim, Yoon Sang ;
Jung, Yong Chae ;
Kim, Seong Yun ;
Song, Jong Man ;
Kim, Minkook ;
Kim, Jaewoo .
POLYMER, 2020, 191
[36]   The brittle-to-ductile transition in tensile and impact behavior of hybrid carbon fibre/self-reinforced polypropylene composites [J].
Selezneva, Marina ;
Swolfs, Yentl ;
Katalagarianakis, Amalia ;
Ichikawa, Tomoko ;
Hirano, Noriyuki ;
Taketa, Ichiro ;
Karaki, Takuya ;
Verpoest, Ignaas ;
Gorbatikh, Larissa .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 109 :20-30
[37]   Development and investigation of nonwoven preforms for self-reinforced polylactic acid composites [J].
Pisupati, Anurag ;
Leroy, Mathilde ;
Laurent, Thomas ;
Park, Chung Hae .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024, 43 (1-2) :72-83
[38]   Fabrication of the Self-Reinforced Composites Using Co-Extrusion Technique [J].
Andrzejewski, Jacek ;
Szostak, Marek ;
Barczewski, Mateusz ;
Krasucki, Janusz ;
Sterzynski, Tomasz .
JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (23)
[39]   Behaviour of a self-reinforced polylactic acid (SRPLA) in seawater [J].
Le Gall, M. ;
Niu, Z. ;
Curto, M. ;
Catarino, A., I ;
Demeyer, E. ;
Jiang, C. ;
Dhakal, H. ;
Everaert, G. ;
Davies, P. .
POLYMER TESTING, 2022, 111
[40]   Pin hole tensile and fatigue properties of self-reinforced PET composites [J].
Kumar, Sanjay ;
Wu, Chang-Mou ;
Lai, Wen-You ;
Lin, Po-Chun .
COMPOSITE STRUCTURES, 2021, 255