Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells

被引:71
作者
Rashad, Ahmad [1 ]
Mohamed-Ahmed, Samih [1 ]
Ojansivu, Miina [1 ,2 ,3 ]
Berstad, Kaia [1 ]
Yassin, Mohammed A. [1 ,4 ]
Kivijarvi, Tove [4 ]
Heggset, Ellinor Baevre [5 ]
Syverud, Kristin [5 ,6 ]
Mustafa, Kamal [1 ]
机构
[1] Univ Bergen, Dept Clin Dent, Bergen, Norway
[2] Univ Tampere, Fac Med & Life Sci, Adult Stem Cell Res Grp, Tampere, Finland
[3] Univ Tampere, BioMediTech Inst, Tampere, Finland
[4] Royal Inst Technol KTH, Dept Fiber & Polymer Technol, Stockholm, Sweden
[5] RISE PFI, Trondheim, Norway
[6] Norwegian Univ Sci & Technol NTNU, Dept Chem Engn, Trondheim, Norway
关键词
MARROW STROMAL CELLS; NANOFIBRILLAR CELLULOSE HYDROGEL; OSTEOGENIC DIFFERENTIATION; SURFACE MODIFICATION; IN-VITRO; PROLIFERATION; ADHESION; COLLAGEN; ENHANCE; IMMOBILIZATION;
D O I
10.1021/acs.biomac.8b01194
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
3D printed polycaprolactone (PCL) has potential as a scaffold for bone tissue engineering, but the hydrophobic surface may hinder optimal cell responses. The surface properties can be improved by coating the scaffold with cellulose nanofibrils material (CNF), a multiscale hydrophilic biocompatible biomaterial derived from wood. In this study, human bone marrow-derived mesenchymal stem cells were cultured on tissue culture plates (TCP) and 3D printed PCL scaffolds coated with CNF. Cellular responses to the surfaces (viability, attachment, proliferation, and osteogenic differentiation) were documented. CNF significantly enhanced the hydrophilic properties of PCL scaffolds and promoted protein adsorption. Live/dead staining and lactate dehydrogenase release assays confirmed that CNF did not inhibit cellular viability. The CNF between the 3D printed PCL strands and pores acted as a hydrophilic barrier, enhancing cell seeding efficiency, and proliferation. CNF supported the formation of a well-organized actin cytoskeleton and cellular production of vinculin protein on the surfaces of TCP and PCL scaffolds. Moreover, CNF-coated surfaces enhanced not only alkaline phosphatase activity, but also collagen Type-I and mineral formation. It is concluded that CNF coating enhances cell attachment, proliferation, and osteogenic differentiation and has the potential to improve the performance of 3D printed PCL scaffolds for bone tissue engineering.
引用
收藏
页码:4307 / 4319
页数:13
相关论文
共 64 条
  • [1] The role of filopodia in the recognition of nanotopographies
    Albuschies, Joerg
    Vogel, Viola
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [2] Cytotoxicity tests of cellulose nanofibril-based structures
    Alexandrescu, Laura
    Syverud, Kristin
    Gatti, Antonietta
    Chinga-Carrasco, Gary
    [J]. CELLULOSE, 2013, 20 (04) : 1765 - 1775
  • [3] Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers
    Arima, Yusuke
    Iwata, Hiroo
    [J]. BIOMATERIALS, 2007, 28 (20) : 3074 - 3082
  • [4] Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture
    Bhattacharya, Madhushree
    Malinen, Melina M.
    Lauren, Patrick
    Lou, Yan-Ru
    Kuisma, Saara W.
    Kanninen, Liisa
    Lille, Martina
    Corlu, Anne
    GuGuen-Guillouzo, Christiane
    Ikkala, Olli
    Laukkanen, Antti
    Urtti, Arto
    Yliperttula, Marjo
    [J]. JOURNAL OF CONTROLLED RELEASE, 2012, 164 (03) : 291 - 298
  • [5] Bone tissue engineering using 3D printing
    Bose, Susmita
    Vahabzadeh, Sahar
    Bandyopadhyay, Amit
    [J]. MATERIALS TODAY, 2013, 16 (12) : 496 - 504
  • [6] Vinculin, an adapter protein in control of cell adhesion signalling
    Carisey, Alex
    Ballestrem, Christoph
    [J]. EUROPEAN JOURNAL OF CELL BIOLOGY, 2011, 90 (2-3) : 157 - 163
  • [7] Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering
    Declercq, Heidi A.
    Desmet, Tim
    Berneel, Elke E. M.
    Dubruel, Peter
    Cornelissen, Maria J.
    [J]. ACTA BIOMATERIALIA, 2013, 9 (08) : 7699 - 7708
  • [8] Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study
    Faia-Torres, Ana B.
    Charnley, Mirren
    Goren, Tolga
    Guimond-Lischer, Stefanie
    Rottmar, Markus
    Maniura-Weber, Katharina
    Spencer, Nicholas D.
    Reis, Rui L.
    Textor, Marcus
    Neves, Nuno M.
    [J]. ACTA BIOMATERIALIA, 2015, 28 : 64 - 75
  • [9] Proliferation and Osteoblastic Differentiation of Human Bone Marrow Stromal Cells on Hydroxyapatite/Bacterial Cellulose Nanocomposite Scaffolds
    Fang, Bo
    Wan, Yi-Zao
    Tang, Ting-Ting
    Gao, Chuan
    Dai, Ke-Rong
    [J]. TISSUE ENGINEERING PART A, 2009, 15 (05) : 1091 - 1098
  • [10] Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies
    Faucheux, N
    Schweiss, R
    Lützow, K
    Werner, C
    Groth, T
    [J]. BIOMATERIALS, 2004, 25 (14) : 2721 - 2730