Bright and dark solitons for a generalized Korteweg-de Vries-modified Korteweg-de Vries equation with high-order nonlinear terms and time-dependent coefficients

被引:11
|
作者
Triki, Houria [2 ]
Wazwaz, Abdul-Majid [1 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Badji Mokhtar Univ, Radiat Phys Lab, Dept Phys, Fac Sci, Annaba 23000, Algeria
关键词
SUB-ODE METHOD; 1-SOLITON SOLUTION; WAVE SOLUTIONS; MKDV EQUATION; EVOLUTION; DISPERSION; MEDIA; LAW;
D O I
10.1139/P11-015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a generalized Korteweg-de Vries-modified Korteweg-de Vries (KdV-mKdV) equation with high-order nonlinear terms and time-dependent coefficients. Bright and dark soliton solutions are obtained by means of the solitary wave ansatz method. The physical parameters in the soliton solutions are obtained as functions of the varying model coefficients. Parametric conditions for the existence of envelope solitons are given. In view of the analysis, we see that the method used is an efficient way to construct exact soliton solutions for such a generalized version of the KdV-mKdV equation with time-dependent coefficients and high-order nonlinear terms.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 50 条
  • [1] Dark Solitons for a Generalized Korteweg-de Vries Equation with Time-Dependent Coefficients
    Triki, Houria
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (3-4): : 199 - 204
  • [2] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Jiang, Yan
    Xue, Yue-Shan
    EUROPEAN PHYSICAL JOURNAL D, 2012, 66 (09):
  • [3] Interactions of breathers and solitons of a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation with symbolic computation
    Pan Wang
    Bo Tian
    Wen-Jun Liu
    Yan Jiang
    Yue-Shan Xue
    The European Physical Journal D, 2012, 66
  • [4] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    TECHNICAL PHYSICS, 2024, : 2336 - 2338
  • [5] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [6] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [8] On the Modified Korteweg-De Vries Equation
    Hayashi, Nakao
    Naumkin, Pavel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2001, 4 (03) : 197 - 227
  • [9] MODIFIED KORTEWEG-DE VRIES EQUATION
    ONO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1974, 37 (03) : 882 - 882
  • [10] Nonlinear Dynamics of Solitons for the Vector Modified Korteweg-de Vries Equation
    Fenchenko, V.
    Khruslov, E.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2018, 14 (02) : 153 - 168