Integration of protein context improves protein-based COVID-19 patient stratification

被引:3
作者
Gao, Jinlong [1 ,2 ]
He, Jiale [1 ,2 ]
Zhang, Fangfei [1 ,2 ]
Xiao, Qi [1 ,2 ]
Cai, Xue [1 ,2 ]
Yi, Xiao [1 ,2 ]
Zheng, Siqi [1 ,2 ]
Zhang, Ying [3 ]
Wang, Donglian [3 ]
Zhu, Guangjun [3 ]
Wang, Jing [3 ]
Shen, Bo [3 ]
Ralser, Markus [4 ,5 ,6 ,7 ]
Guo, Tiannan [1 ,2 ]
Zhu, Yi [1 ,2 ]
机构
[1] Westlake Univ, Sch Life Sci, Westlake Lab Life Sci & Biomed, Key Lab Struct Biol Zhejiang Prov, Hangzhou, Zhejiang, Peoples R China
[2] Westlake Inst Adv Study, Inst Basic Med Sci, Hangzhou, Zhejiang, Peoples R China
[3] Wenzhou Med Univ, Taizhou Hosp, Linhai, Zhejiang, Peoples R China
[4] Francis Crick Inst, Mol Biol Metab Lab, London, England
[5] Charite Univ Med Berlin, Dept Biochem, Berlin, Germany
[6] Free Univ Berlin, Berlin, Germany
[7] Humboldt Univ, Berlin, Germany
基金
英国惠康基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
COVID-19; Severe cases; Proteomics; Protein complex; Stoichiometric ratio; INFLAMMATION; NETWORK; DISEASE;
D O I
10.1186/s12014-022-09370-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background Classification of disease severity is crucial for the management of COVID-19. Several studies have shown that individual proteins can be used to classify the severity of COVID-19. Here, we aimed to investigate whether integrating four types of protein context data, namely, protein complexes, stoichiometric ratios, pathways and network degrees will improve the severity classification of COVID-19. Methods We performed machine learning based on three previously published datasets. The first was a SWATH (sequential window acquisition of all theoretical fragment ion spectra) MS (mass spectrometry) based proteomic dataset. The second was a TMTpro 16plex labeled shotgun proteomics dataset. The third was a SWATH dataset of an independent patient cohort. Results Besides twelve proteins, machine learning also prioritized two complexes, one stoichiometric ratio, five pathways, and five network degrees, resulting a 25-feature panel. As a result, a model based on the 25 features led to effective classification of severe cases with an AUC of 0.965, outperforming the models with proteins only. Complement component C9, transthyretin (TTR) and TTR-RBP (transthyretin-retinol binding protein) complex, the stoichiometric ratio of SAA2 (serum amyloid A proteins 2)/YLPM1 (YLP Motif Containing 1), and the network degree of SIRT7 (Sirtuin 7) and A2M (alpha-2-macroglobulin) were highlighted as potential markers by this classifier. This classifier was further validated with a TMT-based proteomic data set from the same cohort (test dataset 1) and an independent SWATH-based proteomic data set from Germany (test dataset 2), reaching an AUC of 0.900 and 0.908, respectively. Machine learning models integrating protein context information achieved higher AUCs than models with only one feature type. Conclusion Our results show that the integration of protein context including protein complexes, stoichiometric ratios, pathways, network degrees, and proteins improves phenotype prediction.
引用
收藏
页数:13
相关论文
共 50 条
[21]   COVIDpro: Database for Mining Protein Dysregulation in Patients with COVID-19 [J].
Zhang, Fangfei ;
Luna, Augustin ;
Tan, Tingting ;
Chen, Yingdan ;
Sander, Chris ;
Guo, Tiannan .
JOURNAL OF PROTEOME RESEARCH, 2023, 22 (09) :2847-2859
[22]   Protein subunit vaccines: Promising frontiers against COVID-19 [J].
Chavda, Vivek P. ;
Ghali, Eswara Naga Hanuma Kumar ;
Balar, Pankti C. ;
Chauhan, Subhash C. ;
Tiwari, Nikita ;
Shukla, Somanshi ;
Athalye, Mansi ;
Patravale, Vandana ;
Apostolopoulos, Vasso ;
Yallapu, Murali M. .
JOURNAL OF CONTROLLED RELEASE, 2024, 366 :761-782
[23]   COVID-19 in the pediatric patient [J].
de los Angeles del Campo-Martinez, Ma ;
Sanchez-Jara, Berenice ;
Lopez-Santiago, Norma C. ;
Lozano-Garciduenas, Monica ;
Soto-Padilla, Janet M. ;
Mansheca Moreno-Gonzalez, A. ;
Guadalupe Ortiz-Torres, Ma ;
Gonzalez-Llano, Oscar ;
Reyes-Espinoza, Elio A. ;
Munoz-Juarez-Diaz, Lucia M. ;
Velazquez-Marmolejo, Lissette .
GACETA MEDICA DE MEXICO, 2021, 157 :120-130
[24]   Rlip Protein: A Potential Target for COVID-19 [J].
Kopel, Jonathan ;
Singh, Sharda P. ;
Hindle, Ashly ;
Quirch, Miguel ;
Bose, Chhanda ;
Awasthi, Sanjay .
JOURNAL OF COMMUNITY HOSPITAL INTERNAL MEDICINE PERSPECTIVES, 2022, 12 (06) :89-94
[25]   Protein based biomarkers for non-invasive Covid-19 detection [J].
Kaur, Manleen ;
Tiwari, Suryakant ;
Jain, Raghav .
SENSING AND BIO-SENSING RESEARCH, 2020, 29
[26]   A tandem-repeat dimeric RBD protein-based covid-19 vaccine zf2001 protects mice and nonhuman primates [J].
An, Yaling ;
Li, Shihua ;
Jin, Xiyue ;
Han, Jian-Bao ;
Xu, Kun ;
Xu, Senyu ;
Han, Yuxuan ;
Liu, Chuanyu ;
Zheng, Tianyi ;
Liu, Mei ;
Yang, Mi ;
Song, Tian-Zhang ;
Huang, Baoying ;
Zhao, Li ;
Wang, Wen ;
A, Ruhan ;
Cheng, Yingjie ;
Wu, Changwei ;
Huang, Enqi ;
Yang, Shilong ;
Wong, Gary ;
Bi, Yuhai ;
Ke, Changwen ;
Tan, Wenjie ;
Yan, Jinghua ;
Zheng, Yong-Tang ;
Dai, Lianpan ;
Gao, George F. .
EMERGING MICROBES & INFECTIONS, 2022, 11 (01) :1058-1071
[27]   Multiple Biomarker Approach to Risk Stratification in COVID-19 [J].
Smilowitz, Nathaniel R. ;
Nguy, Vuthy ;
Aphinyanaphongs, Yindalon ;
Newman, Jonathan D. ;
Xia, Yuhe ;
Reynolds, Harmony R. ;
Hochman, Judith S. ;
Fishman, Glenn I. ;
Berger, Jeffrey S. .
CIRCULATION, 2021, 143 (13) :1338-1340
[28]   COVID-19 and paediatric patient involvement (cardiovascular aspects) [J].
Mueller, Jan ;
Oberhoffer, Renate ;
Brudy, Leon ;
Ewert, Peter .
EUROPEAN HEART JOURNAL SUPPLEMENTS, 2020, 22 (0P) :P19-P24
[29]   Myocardial injury determination improves risk stratification and predicts mortality in COVID-19 patients [J].
Lorente-Ros, Alvaro ;
Monteagudo Ruiz, Juan Manuel ;
Rincon, Luis M. ;
Ortega Perez, Rodrigo ;
Rivas, Sonia ;
Martinez-Moya, Rafael ;
Ascension Sanroman, Maria ;
Manzano, Luis ;
Luis Alonso, Gonzalo ;
Ibanez, Borja ;
Luis Zamorano, Jose .
CARDIOLOGY JOURNAL, 2020, 27 (05) :489-496
[30]   C-reactive protein and clinical outcomes in patients with COVID-19 [J].
Smilowitz, Nathaniel R. ;
Kunichoff, Dennis ;
Garshick, Michael ;
Shah, Binita ;
Pillinger, Michael ;
Hochman, Judith S. ;
Berger, Jeffrey S. .
EUROPEAN HEART JOURNAL, 2021, 42 (23) :2270-2279