Influence of subsurface Ti interstitials on the reactivity of anatase (101)

被引:9
作者
Aschauer, Ulrich [1 ]
Selloni, Annabella [1 ]
机构
[1] Princeton Univ, Dept Chem, Frick Lab, Princeton, NJ 08544 USA
来源
PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS IX | 2010年 / 7758卷
关键词
TiO2; anatase; defects; subsurface; interstitial; adsorption; oxygen; water; OXYGEN VACANCIES; SURFACE; WATER;
D O I
10.1117/12.862241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present density functional theory calculations on the effect of subsurface titanium interstitial defects on the adsorption of O-2 and water on the anatase (101) surface. Our calculations show that for O-2 the strength of the adsorption is largely determined by the availability of electronic charge at specific adsorption sites above the interstitial, whereas for water the adsorption is mainly influenced by defect induced surface distortions. In particular, we found that the presence of a shallow subsurface interstitial makes O-2 adsorption very favorable, especially at surface 5-fold Ti sites above the defect, where the computed adsorption energy is as large as 2.5 eV. Lower lying interstitials have a less pronounced effect, since the excess electrons from the defect localize further down below the surface. For the case of water, instead, the adsorption energy does not depend significantly on the depth of the interstitial.
引用
收藏
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 1996, The Surface Science of Metal Oxides
[2]  
Aschauer U., PHYS CHEM CHEM UNPUB
[3]   Influence of Subsurface Defects on the Surface Reactivity of TiO2: Water on Anatase (101) [J].
Aschauer, Ulrich ;
He, Yunbin ;
Cheng, Hongzhi ;
Li, Shao-Chun ;
Diebold, Ulrike ;
Selloni, Annabella .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (02) :1278-1284
[4]   Light-induced charge separation in anatase TiO2 particles [J].
Berger, T ;
Sterrer, M ;
Diwald, O ;
Knözinger, E ;
Panayotov, D ;
Thompson, TL ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (13) :6061-6068
[5]   Effect of on-site Coulomb repulsion term U on the band-gap states of the reduced rutile (110) TiO2 surface [J].
Calzado, Carmen J. ;
Hernandez, Norge Cruz ;
Sanz, Javier Fdez .
PHYSICAL REVIEW B, 2008, 77 (04)
[6]   Evidence for O2- radical stabilization at surface oxygen vacancies on polycrystalline TiO2 [J].
Carter, Emma ;
Carley, Albert F. ;
Murphy, Damien M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (28) :10630-10638
[7]   Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101) [J].
Cheng, Hongzhi ;
Selloni, Annabella .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (05)
[8]   Surface and subsurface oxygen vacancies in anatase TiO2 and differences with rutile [J].
Cheng, Hongzhi ;
Selloni, Annabella .
PHYSICAL REVIEW B, 2009, 79 (09)
[9]   Reduced and n-Type Doped TiO2: Nature of Ti3+ Species [J].
Di Valentin, Cristiana ;
Pacchioni, Gianfranco ;
Selloni, Annabella .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20543-20552
[10]   The surface science of titanium dioxide [J].
Diebold, U .
SURFACE SCIENCE REPORTS, 2003, 48 (5-8) :53-229