A level set approach for dilute non-collisional fluid-particle flows

被引:6
|
作者
Liu, Hailiang [1 ]
Wang, Zhongming [2 ]
Fox, Rodney O. [3 ]
机构
[1] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[3] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Level set method; Kinetic equations; Fluid particle fluids; DIRECT QUADRATURE METHOD; MULTIVALUED PHYSICAL OBSERVABLES; SHOCK-CAPTURING SCHEMES; EFFICIENT IMPLEMENTATION; 2-PHASE FLOWS; KINETIC-MODEL; MOMENTS; DYNAMICS; SPRAY; COAGULATION;
D O I
10.1016/j.jcp.2010.08.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Gas-particle and other dispersed-phase flows can be described by a kinetic equation containing terms for spatial transport, acceleration, and particle processes (such as evaporation or collisions). However, computing the dispersed velocity is a challenging task due to the large number of independent variables. A level set approach for computing dilute non-collisional fluid-particle flows is presented. We will consider the sprays governed by the Williams kinetic equation subject to initial distributions away from equilibrium of the form Sigma(N)(i=1) rho(i)(x)delta(xi - u(i)(x)). The dispersed velocity is described as the zero level set of a smooth function, which satisfies a transport equation. This together with the density weight recovers the particle distribution at any time. Moments of any desired order can be evaluated by a quadrature formula involving the level set function and the density weight. It is shown that the method can successfully handle highly non-equilibrium flows (e.g. impinging particle jets, jet crossing, particle rebound off walls, finite Stokes number flows). (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:920 / 936
页数:17
相关论文
共 50 条
  • [1] A Semi-Lagrangian Approach for Dilute Non-Collisional Fluid-Particle Flows
    Bernard-Champmartin, Aude
    Braeunig, Jean-Philippe
    Fochesato, Christophe
    Goudon, Thierry
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2016, 19 (03) : 801 - 840
  • [2] On multiphase turbulence models for collisional fluid-particle flows
    Fox, Rodney O.
    JOURNAL OF FLUID MECHANICS, 2014, 742 : 368 - 424
  • [3] A quadrature-based moment method for dilute fluid-particle flows
    Desjardins, O.
    Fox, R. O.
    Villedieu, P.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (04) : 2514 - 2539
  • [4] Fluid-particle shear flows
    Maury, B
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (04): : 699 - 708
  • [5] A Lagrangian probability-density-function model for collisional turbulent fluid-particle flows
    Innocenti, A.
    Fox, R. O.
    Salvetti, M., V
    Chibbaro, S.
    JOURNAL OF FLUID MECHANICS, 2019, 862 : 449 - 489
  • [6] A fully coupled quadrature-based moment method for dilute to moderately dilute fluid-particle flows
    Passalacqua, A.
    Fox, R. O.
    Garg, R.
    Subramaniam, S.
    CHEMICAL ENGINEERING SCIENCE, 2010, 65 (07) : 2267 - 2283
  • [7] A numerical model for fluid-particle flows
    Lalli, F
    DiMascio, A
    PROCEEDINGS OF THE SIXTH (1996) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL III, 1996, 1996, : 151 - 157
  • [8] A numerical model for fluid-particle flows
    Ist. Naz. per Studi ed Esperienze A., INSEAN, Rome, Italy
    Int J Offshore Polar Eng, 2 (89-93):
  • [9] Fluid-particle coupling in dilute suspension releases
    Moodie, TB
    ADVANCES IN FLUID MECHANICS III, 2000, 26 : 619 - 632
  • [10] MRI measurement of granular flows and fluid-particle flows
    Kawaguchi, Toshihiro
    ADVANCED POWDER TECHNOLOGY, 2010, 21 (03) : 235 - 241