A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semi linear Optimal Control Problems

被引:0
作者
Lu, Zuliang [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Semilinear optimal control problems; mixed finite element methods; a posteriori error estimates; QUADRATIC OPTIMAL-CONTROL; PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; SPECTRAL METHOD; SUPERCONVERGENCE; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order k <= 1 Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 50 条
  • [31] New a posteriori error estimates of mixed finite element methods for quadratic optimal control problems governed by semilinear parabolic equations with integral constraint
    Lu, Zuliang
    Du, Shaohong
    Tang, Yuelong
    BOUNDARY VALUE PROBLEMS, 2013,
  • [32] A Posteriori Error Estimates of Variational Discretization Mixed Finite Element Methods for Integro-Differential Optimal Control Problem
    Lu, Zuliang
    Liu, Dayong
    2013 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE), 2013, : 37 - 41
  • [33] Superconvergence of triangular mixed finite element methods for nonlinear optimal control problems
    Lu, Zuliang
    Zhang, Shuhua
    SCIENCEASIA, 2016, 42 (03): : 213 - 221
  • [34] A posteriori error estimates of hp spectral element methods for integral state constrained elliptic optimal control problems
    Chen, Yanping
    Zhang, Jinling
    Huang, Yunqing
    Xu, Yeqing
    APPLIED NUMERICAL MATHEMATICS, 2019, 144 : 42 - 58
  • [35] Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods
    Chen, Yanping
    Lu, Zuliang
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2010, 46 (11) : 957 - 965
  • [36] A posteriori error estimates of hp spectral element method for parabolic optimal control problems
    Lu, Zuliang
    Cai, Fei
    Xu, Ruixiang
    Hou, Chunjuan
    Wu, Xiankui
    Yang, Yin
    AIMS MATHEMATICS, 2022, 7 (04): : 5220 - 5240
  • [37] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Lu, Zuliang
    Liu, Hongyan
    Hou, Chunjuan
    Cao, Longzhou
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 17
  • [38] A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Integro-Differential Equations
    Lu Zuliang
    Huang Xiao
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1839 - 1844
  • [39] Recovery Type A Posteriori Error Estimates of Fully Discrete Finite Element Methods for General Convex Parabolic Optimal Control Problems
    Tang, Yuelong
    Chen, Yanping
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (04) : 573 - 591
  • [40] L-infinity-Error Estimates of Triangular Mixed Finite Element Methods for Optimal Control Problems Governed by Semilinear Elliptic Equations
    Lu, Zuliang
    Chen, Yanping
    NUMERICAL ANALYSIS AND APPLICATIONS, 2009, 2 (01) : 74 - 86