A Posteriori Error Estimates of Triangular Mixed Finite Element Methods for Semi linear Optimal Control Problems

被引:0
|
作者
Lu, Zuliang [2 ]
Chen, Yanping [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Dept Math, Xiangtan 411105, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Semilinear optimal control problems; mixed finite element methods; a posteriori error estimates; QUADRATIC OPTIMAL-CONTROL; PARABOLIC EQUATIONS; ELLIPTIC-EQUATIONS; STOKES EQUATIONS; SPECTRAL METHOD; SUPERCONVERGENCE; APPROXIMATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods. The state and co-state are approximated by the order k <= 1 Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant element. We derive a posteriori error estimates for the coupled state and control approximations. A numerical example is presented in confirmation of the theory.
引用
收藏
页码:242 / 256
页数:15
相关论文
共 50 条
  • [21] A Posteriori Error Estimates of Lowest Order Raviart-Thomas Mixed Finite Element Methods for Bilinear Optimal Control Problems
    Lu, Zuliang
    Chen, Yanping
    Zheng, Weishan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2012, 2 (02) : 108 - 125
  • [22] A posteriori error estimates of mixed DG finite element methods for linear parabolic equations
    Hou, Tianliang
    APPLICABLE ANALYSIS, 2013, 92 (08) : 1655 - 1665
  • [23] A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
    Hou, Tianliang
    Chen, Yanping
    Huang, Yunqing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 439 - 458
  • [24] A posteriori error estimates of the lowest order Raviart-Thomas mixed finite element methods for convective diffusion optimal control problems
    Yuchun Hua
    Yuelong Tang
    Journal of Inequalities and Applications, 2015
  • [25] Error Estimates of Variational Discretization and Mixed Finite Element Methods for Quasilinear Optimal Control Problems
    Lu, Zuliang
    Huang, Xiao
    PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, : 3519 - 3523
  • [26] Energy norm a posteriori error estimates for mixed finite element methods
    Lovadina, Carlo
    Stenberg, Rolf
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1659 - 1674
  • [27] A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
    Lu, Zuliang
    Chen, Yanping
    Huang, Yunqing
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [28] Error Estimates and Superconvergence of Mixed Finite Element Methods for Convex Optimal Control Problems
    Yanping Chen
    Yunqing Huang
    Wenbin Liu
    Ningning Yan
    Journal of Scientific Computing, 2010, 42 : 382 - 403
  • [29] A posteriori error estimates of mixed finite element methods for general optimal control problems governed by integro-differential equations
    Zuliang Lu
    Dayong Liu
    Journal of Inequalities and Applications, 2013
  • [30] A priori error estimates of finite volume element method for hyperbolic optimal control problems
    Luo XianBing
    Chen YanPing
    Huang YunQing
    SCIENCE CHINA-MATHEMATICS, 2013, 56 (05) : 901 - 914