A Newton-Raphson algorithm with adaptive accuracy control based on a block-preconditioned conjugate gradient technique

被引:8
作者
Badics, Z [1 ]
Cendes, ZJ [1 ]
机构
[1] Ansoft Corp, Pittsburgh, PA 15219 USA
关键词
adaptive control; conjugate gradient (CG) methods; Newton-Krylov method; Newton-Raphson method; nonlinear differential equations;
D O I
10.1109/TMAG.2005.846103
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A fast Newton-Raphson algorithm is developed for the finite-element solution of nonlinear boundary value problems. The linearized equation systems in the nonlinear iteration steps are solved by a block-preconditioned conjugate gradient (CG) technique, in which the stopping criterion of the CG iteration is adaptively controlled by the nonlinear residual error. The Jacobian matrix is partitioned into linear and nonlinear blocks, thereby allowing the relatively rapid generation of an efficient multiplicative preconditioner for the CG iteration. The results obtained for a magnetostatic and a coupled steady conduction-static thermal problem confirm the effectiveness of the algorithm.
引用
收藏
页码:1652 / 1655
页数:4
相关论文
共 20 条
[1]   High-order adaptive time-domain solution of nonlinear coupled electromagnetic-thermal problems [J].
Badics, Z ;
Ionescu, B ;
Cendes, ZJ .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1274-1277
[2]   An application of the inexact newton method to nonlinear magnetostatics [J].
Borghi, CA ;
Breschi, M ;
Carraro, MR ;
Cristofolini, A .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (02) :1076-1079
[3]  
CENDES ZJ, 1986, COMPUTATIONAL ELECTR, P101
[4]   NON-LINEAR 3-DIMENSIONAL ELECTROMAGNETIC-FIELD COMPUTATION IN ELECTRICAL MACHINERY [J].
CHARI, MVK ;
PALMO, MA ;
DANGELO, J .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (11) :8405-8407
[5]   INEXACT NEWTON METHODS [J].
DEMBO, RS ;
EISENSTAT, SC ;
STEIHAUG, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (02) :400-408
[6]   AN ADAPTIVE NEWTON-RAPHSON TECHNIQUE FOR COMBINED VECTOR-SCALAR POTENTIAL SOLUTIONS OF LARGE-SCALE 3D MAGNETIC-FIELD PROBLEMS INVOLVING ANISOTROPIC MATERIALS [J].
DEMERDASH, NA ;
WANG, R ;
ALHAMADI, MA .
IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (02) :1950-1957
[7]  
DENNIS JE, 1996, NUMERICAL METHODS UN
[8]   GLOBALLY CONVERGENT INEXACT NEWTON METHODS [J].
EISENSTAT, SC ;
WALKER, HF .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :393-422
[9]   METHOD FOR DETERMINING RELAXATION FACTOR FOR MODIFIED NEWTON-RAPHSON METHOD [J].
FUJIWARA, K ;
NAKATA, T ;
OKAMOTO, N ;
MURAMATSU, K .
IEEE TRANSACTIONS ON MAGNETICS, 1993, 29 (02) :1962-1965
[10]   AN ACCELERATED NEWTON-RAPHSON METHOD ASSOCIATED WITH THE ICCG ALGORITHM [J].
HENNEBERGER, G ;
SABONNADIERE, JC ;
SATTLER, PK ;
SHEN, D .
IEEE TRANSACTIONS ON MAGNETICS, 1990, 26 (02) :709-711