On the stability of solitary waves for the ostrovsky equation

被引:30
作者
Liu, Yue [1 ]
机构
[1] Univ Texas, Dept Math, Arlington, TX 76019 USA
关键词
ostrovsky equation; solitary waves; stability; weak rotation;
D O I
10.1090/S0033-569X-07-01065-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considered herein is the stability of solitary-wave solutions of the Ostrov-sky equation which is an adaptation of the Korteweg-de Vries equation widely used to describe the effect of rotation on the surface and internal solitary waves or the capillary waves. It is shown that the ground state solitary waves are global minimizers of energy functionals with the constrained variational problem and are deduced to be nonlinearly stable for the small effect of rotation. The analysis makes frequent use of the variational properties of the ground states.
引用
收藏
页码:571 / 589
页数:19
相关论文
共 17 条
[1]  
BENILOV ES, 1992, STUD APPL MATH, V87, P1
[2]  
BREZIS H, 1993, P AM MATH SOC, V88, P437
[3]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[4]   Solitary waves of generalized Kadomtsev-Petviashvili equations [J].
deBouard, A ;
Saut, JC .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :211-236
[5]   STABILITY OF COULOMB-SYSTEMS WITH MAGNETIC-FIELDS .1. THE ONE-ELECTRON ATOM [J].
FROHLICH, J ;
LIEB, EH ;
LOSS, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (02) :251-270
[6]  
GALKIN VN, 1991, PMM-J APPL MATH MEC+, V55, P939, DOI 10.1016/0021-8928(91)90148-N
[7]  
GILMAN OA, 1995, STUD APPL MATH, V95, P115
[8]  
GRIMSHAW R, 1985, STUD APPL MATH, V73, P1
[9]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[10]   ON THE LOWEST EIGENVALUE OF THE LAPLACIAN FOR THE INTERSECTION OF 2 DOMAINS [J].
LIEB, EH .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :441-448