The atomic decomposition of weighted Hardy spaces associated to self-adjoint operators on product spaces

被引:4
作者
Liu, Suying [1 ]
Song, Liang [2 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Xian, Peoples R China
[2] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Weighted Hardy spaces; Operators; Weighted atoms; Product spaces; ELLIPTIC-OPERATORS; NORM INEQUALITIES; HP-THEORY; BMO; DUALITY; VERSION; BOUNDS;
D O I
10.1016/j.jmaa.2016.05.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L be a non-negative self-adjoint operator acting on L-2(R-n) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A(p) weight on R-n x R-n, 1 < p < infinity. In this article we obtain a weighted q-atomic decomposition with q >= p for the weighted Hardy space H-L,w(1)(R-n x R-n) associated to L. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:92 / 115
页数:24
相关论文
共 46 条
[1]  
Anh B.T., ARXIV12022063
[2]  
[Anonymous], 1985, Weighted Norm Inequalities and Related Topics
[3]  
Auscher P., 2005, BOUNDEDNESS BA UNPUB
[4]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[5]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights [J].
Auscher, Pascal ;
Martell, Jose Maria .
ADVANCES IN MATHEMATICS, 2007, 212 (01) :225-276
[6]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type [J].
Auscher, Pascal ;
Martell, Jose Maria .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (02) :265-316
[7]  
Auscher P, 2007, MEM AM MATH SOC, V186, pXI
[8]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators [J].
Auscher, Pascal ;
Martell, Jose Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (02) :703-746
[9]   Weighted anisotropic product Hardy spaces and boundedness of sublinear operators [J].
Bownik, Marcin ;
Li, Baode ;
Yang, Dachun ;
Zhou, Yuan .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (03) :392-442
[10]   Calderon reproducing formulas and new Besov spaces associated with operators [J].
Bui, Huy-Qui ;
Duong, Xuan Thinh ;
Yan, Lixin .
ADVANCES IN MATHEMATICS, 2012, 229 (04) :2449-2502