Parabolic Gradient Estimates and Harnack Inequalities for a Nonlinear Equation Under The Ricci Flow

被引:0
作者
Zhang, Liangdi [1 ]
机构
[1] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2021年 / 52卷 / 01期
关键词
Parabolic gradient estimate; Nonlinear parabolic equation; Ricci flow;
D O I
10.1007/s00574-019-00193-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When the Riemannian metric evolves under the Ricci flow, we investigate parabolic gradient estimates (Li-Yau's type and J. Li's type) for positive solutions to the nonlinear parabolic equation (Delta - partial derivative(t))u = (p + 1) vertical bar del u vertical bar(2)/u + qu on the underlying manifold. Based on these gradient estimates, we derive associated Harnack inequalities, respectively.
引用
收藏
页码:77 / 99
页数:23
相关论文
共 16 条
[1]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[2]   A compact gradient generalized quasi-Einstein metric with constant scalar curvature [J].
Barros, A. ;
Gomes, J. N. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) :702-705
[3]  
Besse A., 2007, EINSTEIN MANIFOLDS
[4]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[5]   Rigidity of quasi-Einstein metrics [J].
Case, Jeffrey ;
Shu, Yu-Jen ;
Wei, Guofang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2011, 29 (01) :93-100
[6]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[7]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225, DOI 10.4310/jdg/1214453430
[8]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[9]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201
[10]  
Li P., 1993, RIMGARC LECT NOTES S, V6