Carbon dioxide thermal decomposition: Observation of incubation

被引:10
作者
Oehlschlaeger, MA [1 ]
Davidson, DF [1 ]
Jeffries, JB [1 ]
Hanson, RK [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, High Temp Gasdynam Lab, Stanford, CA 94305 USA
来源
ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS | 2005年 / 219卷 / 05期
关键词
carbon dioxide (CO2); decomposition; dissociation; incubation;
D O I
10.1524/zpch.219.5.555.64325
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incubation prior to the thermal decomposition Of CO2 is observed for the first time behind shock waves, confirming the expected bottleneck in collisional activation of this triatomic molecule. The thermal decomposition of carbon dioxide has been investigated behind reflected shock waves at temperatures of 3200-4600K and pressures of 45-10kPa. Ultraviolet laser absorption was used to monitor the CO2 concentration with microsecond time resolution, allowing observation of a pronounced incubation period prior to steady CO2 dissociation. Master equation simulations, with a simple model for collisional energy transfer, were carried out to describe the measured incubation times and dissociation rate coefficient. The second order rate coefficient for CO2 dissociation was found to be 3.14 x 10(14) exp(-51 300 K/T) cm(3) mol(-1) s(-1). The number of incubation collisions was found to range from 7 x 10(3) at 4600 K to 3.5 x 10(4) at 3200 K. The master equation simulations suggest that the energy transferred per collision must have a greater than linear dependence on energy.
引用
收藏
页码:555 / 567
页数:13
相关论文
共 50 条
[21]   Modelling of carbon tetrachloride decomposition in oxidative RF thermal plasma [J].
Kovács, T ;
Turányi, T ;
Foglein, K ;
Szépvölgyi, J .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2006, 26 (03) :293-318
[22]   Modelling of Carbon Tetrachloride Decomposition in Oxidative RF Thermal Plasma [J].
Tamás Kovács ;
Tamás Turányi ;
Katalin Főglein ;
János Szépvölgyi .
Plasma Chemistry and Plasma Processing, 2006, 26 :293-318
[23]   Catalysed thermal decomposition of KClO3 and carbon gasification [J].
Martins, S. ;
Fernandes, J. B. ;
Mojumdar, S. C. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 119 (02) :831-835
[24]   Minor stable carbon isotope fractionation between respired carbon dioxide and bulk soil organic matter during laboratory incubation of topsoil [J].
D. O. Breecker ;
S. Bergel ;
M. Nadel ;
M. M. Tremblay ;
R. Osuna-Orozco ;
T. E. Larson ;
Z. D. Sharp .
Biogeochemistry, 2015, 123 :83-98
[25]   Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning [J].
Uhm, Han S. ;
Kim, Chul H. .
PHYSICS OF PLASMAS, 2009, 16 (11) :114502
[26]   Decomposition of hydrocarbons to hydrogen and carbon [J].
Ahmed, Shakeel ;
Aitani, Abdullah ;
Rahman, Faizur ;
Al-Dawood, Ali ;
Al-Muhaish, Fahad .
APPLIED CATALYSIS A-GENERAL, 2009, 359 (1-2) :1-24
[27]   Effect of Dielectric Packing Materials on the Decomposition of Carbon Dioxide Using DBD Microplasma Reactor [J].
Duan, Xiaofei ;
Hu, Zongyuan ;
Li, Yanping ;
Wang, Baowei .
AICHE JOURNAL, 2015, 61 (03) :898-903
[28]   Solar-gliding arc plasma reactor for carbon dioxide decomposition: Design and characterization [J].
Nagassou, Dassou ;
Mohsenian, Sina ;
Bhatta, Saroj ;
Elahi, Rasool ;
Trelles, Juan P. .
SOLAR ENERGY, 2019, 180 :678-689
[29]   Identifying the major players behind increasing global carbon dioxide emissions: A decomposition analysis [J].
Pani R. ;
Mukhopadhyay U. .
The Environmentalist, 2010, 30 (2) :183-205
[30]   Synthesis and characterization of magnetic zinc and manganese ferrite catalysts for decomposition of carbon dioxide into methane [J].
Chiang, Chao-Lung ;
Lin, Kuen-Song ;
Hsu, Pei-Ju ;
Lin, Yan-Gu .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (34) :22123-22137