FREE BRACE ALGEBRAS ARE FREE PRE-LIE ALGEBRAS

被引:10
作者
Foissy, Loic [1 ]
机构
[1] Univ Reims, Math Lab, FRE3111, F-51687 Reims 2, France
关键词
Brace algebras; Pre-Lie algebras; HOPF-ALGEBRAS; ROOTED TREES; THEOREM;
D O I
10.1080/00927870903115000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g be a free brace algebra. This structure implies that g is also a pre-Lie algebra and a Lie algebra. It is already known that g is a free Lie algebra. We prove here that g is also a free pre-Lie algebra, using a description of g with the help of planar rooted trees, a permutative product, and manipulations on the Poincare-Hilbert series of g.
引用
收藏
页码:3358 / 3369
页数:12
相关论文
共 17 条
[1]  
Aguiar M., 2004, LECT NOTES PURE APPL, V237, P1
[2]  
Chapoton F, 2001, INT MATH RES NOTICES, V2001, P395
[3]   Cartier-Milnor-Moore-Quillen theorem for dendriform bialgebras and brace algebras [J].
Chapoton, F .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2002, 168 (01) :1-18
[4]   Free Pre-Lie Algebras are Free as Lie Algebras [J].
Chapoton, Frederic .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2010, 53 (03) :425-437
[5]   Hopf algebras, renormalization and noncommutative geometry [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) :203-242
[6]   Compatible associative products and trees [J].
Dotsenko, Vladimir .
ALGEBRA & NUMBER THEORY, 2009, 3 (05) :567-586
[7]  
Foissy L, 2002, B SCI MATH, V126, P193, DOI 10.1016/S0007-4497(02)01113-2
[8]   Finite dimensional comodules over the Hopf algebra of rooted trees [J].
Foissy, L .
JOURNAL OF ALGEBRA, 2002, 255 (01) :89-120
[9]   HOPF-ALGEBRAIC STRUCTURE OF COMBINATORIAL OBJECTS AND DIFFERENTIAL-OPERATORS [J].
GROSSMAN, R ;
LARSON, RG .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 72 (1-2) :109-117
[10]   HOPF-ALGEBRAIC STRUCTURE OF FAMILIES OF TREES [J].
GROSSMAN, R ;
LARSON, RG .
JOURNAL OF ALGEBRA, 1989, 126 (01) :184-210