Dirac particle in a plane wave field and the semi-classical approximation

被引:5
作者
Bourouaine, S [1 ]
机构
[1] Mentouri Univ, Fac Sci, Dept Phys, Constantine, Algeria
关键词
Fradkin Gitman formalism; plane wave field;
D O I
10.1002/andp.200410103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we investigate the influence of photon represented by plane wave field on Dirac particle in the context of path integral approach given by Fradkin and Gitman formalism. In our case, although the action relative to Dirac particle in plane wave field seems to be non quadratic, the result obtained by semi-classical approach is the same as that found by an exact calculation. Hence; when we add the plane wave field to any quadratic actions related to Fradkin and Gitman approach, the total action behaves like quadratic. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:207 / 213
页数:7
相关论文
共 11 条
[1]   Path integral for a Dirac particle in a quantized plane wave field [J].
Bentag, B ;
Merdaci, A ;
Chetouani, L .
EUROPEAN PHYSICAL JOURNAL C, 2002, 26 (02) :311-320
[2]  
Bentag B, 2000, ANN PHYS-BERLIN, V9, P103, DOI 10.1002/(SICI)1521-3889(200002)9:2<103::AID-ANDP103>3.0.CO
[3]  
2-A
[4]   Exact propagators for Dirac particle with anomalous magnetic moment in a plane wave field [J].
Boudiaf, N ;
Boudjedaa, T ;
Chetouani, L .
EUROPEAN PHYSICAL JOURNAL C, 2001, 22 (03) :593-600
[5]   Path integral for spinning particle in the plane wave field: Global and local projections [J].
Boudiaf, N ;
Boudjedaa, T ;
Chetouani, L .
EUROPEAN PHYSICAL JOURNAL C, 2001, 20 (03) :585-591
[6]   PATH INTEGRAL FOR PARTICLES OF SPIN ZERO AND 1/2 IN THE FIELD OF AN ELECTROMAGNETIC PLANE-WAVE [J].
BOUDJEDAA, T ;
CHETOUANI, L ;
GUECHI, L ;
HAMMANN, TF .
PHYSICA SCRIPTA, 1992, 46 (04) :289-294
[7]  
FRADKIN ES, 1991, PHYS REV D, V44, pN10
[8]   QUANTIZATION OF A SPINNING PARTICLE WITH ANOMALOUS MAGNETIC-MOMENT [J].
GITMAN, DM ;
SAA, AV .
CLASSICAL AND QUANTUM GRAVITY, 1993, 10 (08) :1447-1460
[9]   Spin factor in the path integral representation for the Dirac propagator in external fields [J].
Gitman, DM ;
Zlatev, SI .
PHYSICAL REVIEW D, 1997, 55 (12) :7701-7714
[10]   Path integral for Dirac particle in plane wave field [J].
Zeggari, S ;
Boudjedaa, T ;
Chetouani, L .
PHYSICA SCRIPTA, 2001, 64 (04) :285-291