Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells

被引:96
作者
Byranvand, Mahdi Malekshahi [1 ,2 ]
Saliba, Michael [1 ,2 ]
机构
[1] Univ Stuttgart, Inst Photovolta IPV, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
[2] Forschungszentrum Julich, Helmholtz Young Investigator Grp, FRONTRUNNER IEK5 Photovoltaik, D-52425 Julich, Germany
关键词
cation and halide vacancies; defect passivation; perovskite films; solar cells; LEAD IODIDE PEROVSKITES; ORGANIC-INORGANIC PEROVSKITE; METAL-HALIDE PEROVSKITES; OPEN-CIRCUIT VOLTAGE; MOISTURE STABILITY; NONRADIATIVE RECOMBINATION; ENVIRONMENTAL STABILITY; ENHANCING EFFICIENCY; SURFACE PASSIVATION; HYBRID PEROVSKITES;
D O I
10.1002/solr.202100295
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Perovskite solar cells (PSCs) have been introduced as an attractive photovoltaic technology over the past decade due to their low-cost processing, earth-abundant raw materials, and high power conversion efficiencies (PCEs) of up to 25.2%. However, the relatively high density of defects within the bulk, grain boundaries, and surface of polycrystalline perovskite films acts as recombination centers and facilitates ion migration, lowering the theoretical PCE ceiling, often leading to inferior device stability. Therefore, understanding the defect sources and developing passivation methods are key factors for reaching higher PCEs and stabilities in perovskite photovoltaics. Herein, various passivation methods, including bulk and surface treatment of perovskite films, are explored. In the bulk treatment, the passivating agents should be directly added to the perovskite precursor. However, in the surface treatment method, the surface of perovskite films can be treated by inducing passivating agents during the intermediate phase or after annealing steps, denoted here as in-film or surface posttreatment. In addition, different kinds of passivating agents are categorized based on their functional groups. Finally, the outline directions to minimize the defects in perovskite films are highlighted.
引用
收藏
页数:35
相关论文
共 275 条
[1]   Supramolecular Halogen Bond Passivation of Organic-Inorganic Halide Perovskite Solar Cells [J].
Abate, Antonio ;
Saliba, Michael ;
Hollman, Derek J. ;
Stranks, Samuel D. ;
Wojciechowski, Konrad ;
Avolio, Roberto ;
Grancini, Giulia ;
Petrozza, Annamaria ;
Snaith, Henry J. .
NANO LETTERS, 2014, 14 (06) :3247-3254
[2]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[3]   Thermal Stability and Performance Enhancement of Perovskite Solar Cells Through Oxalic Acid-Induced Perovskite Formation [J].
Afroz, Mohammad Adil ;
Ghimire, Nabin ;
Reza, Khan Mamun ;
Bahrami, Behzad ;
Bobba, Raja Sekhar ;
Gurung, Ashim ;
Chowdhury, Ashraful Haider ;
Iyer, Parameswar Krishnan ;
Quo, Qiquan .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (03) :2432-2439
[4]   New Fullerene Derivative as an n-Type Material for Highly Efficient, Flexible Perovskite Solar Cells of a p-i-n Configuration [J].
Ahmad, Taimoor ;
Wilk, Barbara ;
Radicchi, Eros ;
Fuentes Pineda, Rosinda ;
Spinelli, Pierpaolo ;
Herterich, Jan ;
Castriotta, Luigi Angelo ;
Dasgupta, Shyantan ;
Mosconi, Edoardo ;
De Angelis, Filippo ;
Kohlstaedt, Markus ;
Wuerfel, Uli ;
Di Carlo, Aldo ;
Wojciechowski, Konrad .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (45)
[5]   Trapped charge-driven degradation of perovskite solar cells [J].
Ahn, Namyoung ;
Kwak, Kwisung ;
Jang, Min Seok ;
Yoon, Heetae ;
Lee, Byung Yang ;
Lee, Jong-Kwon ;
Pikhitsa, Peter V. ;
Byun, Junseop ;
Choi, Mansoo .
NATURE COMMUNICATIONS, 2016, 7
[6]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[7]   Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction [J].
Al-Ashouri, Amran ;
Kohnen, Eike ;
Li, Bor ;
Magomedov, Artiom ;
Hempel, Hannes ;
Caprioglio, Pietro ;
Marquez, Jose A. ;
Vilches, Anna Belen Morales ;
Kasparavicius, Ernestas ;
Smith, Joel A. ;
Phung, Nga ;
Menzel, Dorothee ;
Grischek, Max ;
Kegelmann, Lukas ;
Skroblin, Dieter ;
Gollwitzer, Christian ;
Malinauskas, Tadas ;
Jost, Marko ;
Matic, Gasper ;
Rech, Bernd ;
Schlatmann, Rutger ;
Topic, Marko ;
Korte, Lars ;
Abate, Antonio ;
Stannowski, Bernd ;
Neher, Dieter ;
Stolterfoht, Martin ;
Unold, Thomas ;
Getautis, Vytautas ;
Albrecht, Steve .
SCIENCE, 2020, 370 (6522) :1300-+
[8]   Low-Temperature Crystallization Enables 21.9% Efficient Single-Crystal MAPbI3 Inverted Perovskite Solar Cells [J].
Alsalloum, Abdullah Y. ;
Turedi, Bekir ;
Zheng, Xiaopeng ;
Mitra, Somak ;
Zhumekenov, Ayan A. ;
Lee, Kwang Jae ;
Maity, Partha ;
Gereige, Issam ;
AlSaggaf, Ahmed ;
Rogan, Iman S. ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ACS ENERGY LETTERS, 2020, 5 (02) :657-+
[9]   ABX3 Perovskites for Tandem Solar Cells [J].
Anaya, Miguel ;
Lozano, Gabriel ;
Calvo, Mauricio E. ;
Miguez, Hernan .
JOULE, 2017, 1 (04) :769-793
[10]   Passivation Mechanism Exploiting Surface Dipoles Affords High-Performance Perovskite Solar Cells [J].
Ansari, Fatemeh ;
Shirzadi, Erfan ;
Salavati-Niasari, Masoud ;
LaGrange, Thomas ;
Nonomura, Kazuteru ;
Yum, Jun-Ho ;
Sivula, Kevin ;
Zakeeruddin, Shaik M. ;
Nazeeruddin, Mohammad Khaja ;
Graetzel, Michael ;
Dyson, Paul J. ;
Hagfeldt, Anders .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (26) :11428-11433