Multidimensional Monte Carlo Integration on Clusters with Hybrid GPU-Accelerated Nodes

被引:2
|
作者
Szalkowski, Dominik [1 ]
Stpiczynski, Przemyslaw [1 ]
机构
[1] Marie Curie Sklodowska Univ, Inst Math, PL-20031 Lublin, Poland
关键词
Multidimensional integration; Monte Carlo methods; Parallelized pseudorandom number generators; GPU clusters; LINEAR CONGRUENTIAL GENERATORS; PARALLEL; LIBRARY;
D O I
10.1007/978-3-642-55224-3_56
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The aim of this paper is to show that the multidimensional Monte Carlo integration can be efficiently implemented on clusters with hybrid GPU-accelerated nodes using recently developed parallel versions of LCG and LFG pseudorandom number generators. We explain how to utilize multiple GPUs and all available cores of CPUs within a single node and how to extend computations on all available nodes of a cluster using MPI. The results of experiments performed on a Tesla-based GPU cluster are also presented and discussed.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 50 条
  • [41] GPU-accelerated Monte Carlo-based online adaptive proton therapy: A feasibility study
    Feng, Hongying
    Patel, Samir H.
    Wong, William W.
    Younkin, James E.
    Penoncello, Gregory P.
    Morales, Danairis Hernandez
    Stoker, Joshua B.
    Robertson, Daniel G.
    Fatyga, Mirek
    Bues, Martin
    Schild, Steven E.
    Foote, Robert L.
    Liu, Wei
    MEDICAL PHYSICS, 2022, 49 (06) : 3550 - 3563
  • [42] Fermilab multicore and GPU-accelerated clusters for lattice QCD
    Holmgren, D.
    Seenu, N.
    Simone, J.
    Singh, A.
    INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6, 2012, 396
  • [43] Efficient OLAP algorithms on GPU-accelerated Hadoop clusters
    Hongzhi Wang
    Zheng Wang
    Ning Li
    Xinxin Kong
    Distributed and Parallel Databases, 2019, 37 : 507 - 542
  • [44] Efficient OLAP algorithms on GPU-accelerated Hadoop clusters
    Wang, Hongzhi
    Wang, Zheng
    Li, Ning
    Kong, Xinxin
    DISTRIBUTED AND PARALLEL DATABASES, 2019, 37 (04) : 507 - 542
  • [45] GPU-Accelerated Quantification Filters for Analytical Queries in Multidimensional Databases
    Strohm, Peter Tim
    Wittmer, Steffen
    Haberstroh, Alexander
    Lauer, Tobias
    NEW TRENDS IN DATABASE AND INFORMATION SYSTEMS II, 2015, 312 : 229 - 242
  • [46] Investigating the Use of GPU-Accelerated Nodes for SAR Image Formation
    Hartley, Timothy D. R.
    Fasih, Ahmed R.
    Berdanier, Charles A.
    Oezguener, Fuesun
    Catalyurek, Umit V.
    2009 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING AND WORKSHOPS, 2009, : 663 - +
  • [47] Development of a GPU-accelerated photon-electron coupled transportation Monte Carlo code and its application
    Wu Z.
    Lu W.
    Yan S.
    Qiu R.
    Zhang H.
    Li J.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2022, 43 (11): : 1649 - 1656+1663
  • [48] GPU-Accelerated Monte Carlo Study of the Application of the Novel Superficial X-Ray Radiotherapy Filters
    Zhang, H.
    Tao, L.
    Chang, Y.
    Pei, X.
    Xu, X. G.
    MEDICAL PHYSICS, 2024, 51 (10) : 7961 - 7961
  • [49] GPU-accelerated Monte Carlo TPS for treatment plan verification at CCB Krakow proton therapy centre
    Rucinski, A.
    Battistoni, G.
    Durante, M.
    Gajewski, J.
    Garbacz, M.
    Krah, N.
    Olko, P.
    Patera, V.
    Rinaldi, I.
    Skrzypek, A.
    Tommasino, F.
    Scifoni, E.
    Schiavi, A.
    RADIOTHERAPY AND ONCOLOGY, 2018, 127 : S997 - S997
  • [50] FullMonteCUDA: a fast, flexible, and accurate GPU-accelerated Monte Carlo simulator for light propagation in turbid media
    Young-Schultz, Tanner
    Brown, Stephen
    Lilge, Lothar
    Betz, Vaughn
    BIOMEDICAL OPTICS EXPRESS, 2019, 10 (09) : 4711 - 4726