Experimental and numerical investigation of ductile fracture using GTN damage model on in-situ tensile tests

被引:75
作者
Gholipour, H. [1 ]
Biglari, F. R. [1 ]
Nikbin, K. [2 ]
机构
[1] Amirkabir Univ Technol, Mech Engn Dept, Tehran, Iran
[2] Imperial Coll London, Mech Engn Dept, London SW7 2AZ, England
关键词
Ductile fracture; Growth and coalescence; GTN model; Stress state; Void nucleation; RESPONSE-SURFACE METHODOLOGY; GURSON MODEL; MICROMECHANICAL DAMAGE; VOID NUCLEATION; PARAMETER-IDENTIFICATION; NONSPHERICAL VOIDS; APPROXIMATE MODELS; BLANKING PROCESS; FAILURE ANALYSIS; DP600; STEEL;
D O I
10.1016/j.ijmecsci.2019.105170
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The present work is devoted to experimental and numerical investigation of in situ tensile tests to recognize the mechanisms of ductile fracture under different stress states. The GTN model, which is a micromechanical based damage model, was used for numerical simulations. The void related parameters of GTN model for SAE 1010 plain carbon steel were identified by response surface method (RSM) through minimizing the difference between numerical and experimental results of tensile test on a standard specimen. The void related parameters of GTN model were determined 0.00107, 0.00716, 0.01 and 0.15 for f(0), f(N), f(c) and f(f) respectively. After calibrating the damage model for the studied material, the tensile tests were carried out on the in-situ specimens with different geometries. The fractographic analysis was performed to identify the ductile fracture under wide range of stress states and two failure mechanisms were observed. The calibrated damage model was applied to FE simulations of in-situ tensile tests for numerical study of the experimentally observed fracture phenomenon. The extracted numerical results showed a good agreement with experimental observations comparing load-displacement plots with a margin of error within 5%. A better ductile fracture predictions were captured in 90 degrees specimens. The location of fracture initiation, crack growth orientation and the displacement at fracture zone in numerical studies also showed close correspondence with experiments.
引用
收藏
页数:16
相关论文
共 62 条
[1]   Application of response surface methodology to drive GTN model parameters and determine the FLD of tailor welded blank [J].
Abbasi, M. ;
Bagheri, B. ;
Ketabchi, M. ;
Haghshenas, D. F. .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 53 (01) :368-376
[2]   Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming [J].
Abbassi, Fethi ;
Belhadj, Touhami ;
Mistou, Sebastien ;
Zghal, Ali .
MATERIALS & DESIGN, 2013, 45 :605-615
[3]   Experimental and numerical analysis of micromechanical damage in the punching process for High-Strength Low-Alloy steels [J].
Achouri, Mohamed ;
Germain, Guenael ;
Dal Santo, Philippe ;
Saidane, Delphine .
MATERIALS & DESIGN, 2014, 56 :657-670
[4]   Experimental characterization and numerical modeling of micromechanical damage under different stress states [J].
Achouri, Mohamed ;
Germain, Guenael ;
Dal Santo, Philippe ;
Saidane, Delphine .
MATERIALS & DESIGN, 2013, 50 :207-222
[5]   Numerical integration of an advanced Gurson model for shear loading: Application to the blanking process [J].
Achouri, Mohamed ;
Germain, Guenael ;
Dal Santo, Philippe ;
Saidane, Delphine .
COMPUTATIONAL MATERIALS SCIENCE, 2013, 72 :62-67
[6]   A ductile fracture analysis using a local damage model [J].
Benseddiq, N. ;
Imad, A. .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2008, 85 (04) :219-227
[7]   The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading [J].
Boyce, B. L. ;
Kramer, S. L. B. ;
Bosiljevac, T. R. ;
Corona, E. ;
Moore, J. A. ;
Elkhodary, K. ;
Simha, C. H. M. ;
Williams, B. W. ;
Cerrone, A. R. ;
Nonn, A. ;
Hochhalter, J. D. ;
Bomarito, G. F. ;
Warner, J. E. ;
Carter, B. J. ;
Warner, D. H. ;
Ingraffea, A. R. ;
Zhang, T. ;
Fang, X. ;
Lua, J. ;
Chiaruttini, V. ;
Maziere, M. ;
Feld-Payet, S. ;
Yastrebov, V. A. ;
Besson, J. ;
Chaboche, J. -L. ;
Lian, J. ;
Di, Y. ;
Wu, B. ;
Novokshanov, D. ;
Vajragupta, N. ;
Kucharczyk, P. ;
Brinnel, V. ;
Doebereiner, B. ;
Muenstermann, S. ;
Neilsen, M. K. ;
Dion, K. ;
Karlson, K. N. ;
Foulk, J. W., III ;
Brown, A. A. ;
Veilleux, M. G. ;
Bignell, J. L. ;
Sanborn, S. E. ;
Jones, C. A. ;
Mattie, P. D. ;
Pack, K. ;
Wierzbicki, T. ;
Chi, S. -W. ;
Lin, S. -P. ;
Mahdavi, A. ;
Predan, J. .
INTERNATIONAL JOURNAL OF FRACTURE, 2016, 198 (1-2) :5-100
[8]   The Sandia Fracture Challenge: blind round robin predictions of ductile tearing [J].
Boyce, B. L. ;
Kramer, S. L. B. ;
Fang, H. E. ;
Cordova, T. E. ;
Neilsen, M. K. ;
Dion, K. ;
Kaczmarowski, A. K. ;
Karasz, E. ;
Xue, L. ;
Gross, A. J. ;
Ghahremaninezhad, A. ;
Ravi-Chandar, K. ;
Lin, S. -P. ;
Chi, S. -W. ;
Chen, J. S. ;
Yreux, E. ;
Ruter, M. ;
Qian, D. ;
Zhou, Z. ;
Bhamare, S. ;
O'Connor, D. T. ;
Tang, S. ;
Elkhodary, K. I. ;
Zhao, J. ;
Hochhalter, J. D. ;
Cerrone, A. R. ;
Ingraffea, A. R. ;
Wawrzynek, P. A. ;
Carter, B. J. ;
Emery, J. M. ;
Veilleux, M. G. ;
Yang, P. ;
Gan, Y. ;
Zhang, X. ;
Chen, Z. ;
Madenci, E. ;
Kilic, B. ;
Zhang, T. ;
Fang, E. ;
Liu, P. ;
Lua, J. ;
Nahshon, K. ;
Miraglia, M. ;
Cruce, J. ;
DeFrese, R. ;
Moyer, E. T. ;
Brinckmann, S. ;
Quinkert, L. ;
Pack, K. ;
Luo, M. .
INTERNATIONAL JOURNAL OF FRACTURE, 2014, 186 (1-2) :5-68
[9]  
Brocks W., 1995, Micromechanics of Fracture and their Structural Significance, The Institute of Materials Second Griffith Conference, Sheffield, Gro{SS}britannien, P109
[10]   Damage-based finite-element modeling of tube hydroforming [J].
Butcher, Cliff ;
Chen, Zengtao ;
Bardelcik, Alexander ;
Worswick, Michael .
INTERNATIONAL JOURNAL OF FRACTURE, 2009, 155 (01) :55-65