Asymptotic stability of homogeneous solutions of incompressible stationary Navier-Stokes equations

被引:10
作者
Li, YanYan [1 ]
Yan, Xukai [2 ]
机构
[1] Rutgers State Univ, Dept Math, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Oklahoma State Univ, Dept Math, 401 Math Sci Bldg, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
SIMILAR VISCOUS FLOWS; ISOLATED SINGULARITIES; WEAK SOLUTIONS; AXIAL CAUSES; L2; DECAY;
D O I
10.1016/j.jde.2021.06.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was proved by Karch and Pilarczyk that Landau solutions are asymptotically stable under any L-2-perturbation. In our earlier work with L. Li, we have classified all (-1)-homogeneous axisymmetric no-swirl solutions of incompressible stationary Navier-Stokes equations in three dimension which are smooth on the unit sphere minus the south and north poles. In this paper, we study the asymptotic stability of the least singular solutions among these solutions other than Landau solutions, and prove that such solutions are asymptotically stable under any L-2-perturbation. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:226 / 245
页数:20
相关论文
共 25 条
[1]  
[Anonymous], UCHEN ZAPISKI MOSKOV
[2]  
[Anonymous], 2002, CHAPMAN HALL CRC RES
[3]  
[Anonymous], 1977, STUDIES MATH ITS APP
[4]  
Cannone M., 2004, HDB MATH FLUID DYNAM, VIII, P16
[5]  
Goldshtik M.A., 1960, J. Appl. Math. Mech., V24, P913
[6]   ON L2 DECAY OF WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS IN RN [J].
KAJIKIYA, R ;
MIYAKAWA, T .
MATHEMATISCHE ZEITSCHRIFT, 1986, 192 (01) :135-148
[7]   L2-asymptotic stability of singular solutions to the Navier-Stokes system of equations in R3 [J].
Karch, Grzegorz ;
Pilarczyk, Dominika ;
Schonbek, Maria E. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (01) :14-40
[8]   Asymptotic Stability of Landau Solutions to Navier-Stokes System [J].
Karch, Grzegorz ;
Pilarczyk, Dominika .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (01) :115-131
[10]  
Landau L.D., 1944, Dokl. Akad. Nauk SSSR, V43, P299