The Use of High-Throughput Phenotyping for Assessment of Heat Stress-Induced Changes in Arabidopsis

被引:32
|
作者
Gao, Ge [1 ]
Tester, Mark A. [1 ]
Julkowska, Magdalena M. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Div Biol & Environm Sci & Engn BESE, Thuwal 239556900, Saudi Arabia
关键词
LIGHT-RESPONSE CURVES; CHLOROPHYLL FLUORESCENCE; TRANSCRIPTION FACTOR; DROUGHT TOLERANCE; SHOCK PROTEINS; THERMOTOLERANCE; THALIANA; HSP101; ACQUISITION; MUTANTS;
D O I
10.34133/2020/3723916
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The worldwide rise in heatwave frequency poses a threat to plant survival and productivity. Determining the new marker phenotypes that show reproducible response to heat stress and contribute to heat stress tolerance is becoming a priority. In this study, we describe a protocol focusing on the daily changes in plant morphology and photosynthetic performance after exposure to heat stress using an automated noninvasive phenotyping system. Heat stress exposure resulted in an acute reduction of the quantum yield of photosystem II and increased leaf angle. In longer term, the exposure to heat also affected plant growth and morphology. By tracking the recovery period of the WT and mutants impaired in thermotolerance (hsp101), we observed that the difference in maximum quantum yield, quenching, rosette size, and morphology. By examining the correlation across the traits throughout time, we observed that early changes in photochemical quenching corresponded with the rosette size at later stages, which suggests the contribution of quenching to overall heat tolerance. We also determined that 6 h of heat stress provides the most informative insight in plant's responses to heat, as it shows a clear separation between treated and nontreated plants as well as the WT and hsp101. Our work streamlines future discoveries by providing an experimental protocol, data analysis pipeline, and new phenotypes that could be used as targets in thermotolerance screenings.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Translating High-Throughput Phenotyping into Genetic Gain
    Luis Araus, Jose
    Kefauver, Shawn C.
    Zaman-Allah, Mainassara
    Olsen, Mike S.
    Cairns, Jill E.
    TRENDS IN PLANT SCIENCE, 2018, 23 (05) : 451 - 466
  • [42] Imaging for High-Throughput Phenotyping in Energy Sorghum
    Batz, Jose
    Mendez-Dorado, Mario A.
    Thomasson, J. Alex
    JOURNAL OF IMAGING, 2016, 2 (01)
  • [43] Initial steps for high-throughput phenotyping in vineyards
    Herzog, K.
    Roscher, R.
    Wieland, M.
    Kicherer, A.
    Laebe, T.
    Foerstner, W.
    Kuhlmann, H.
    Toepfer, R.
    VITIS, 2014, 53 (01) : 1 - 8
  • [44] Utilization of Spectral Indices for High-Throughput Phenotyping
    Tayade, Rupesh
    Yoon, Jungbeom
    Lay, Liny
    Khan, Abdul Latif
    Yoon, Youngnam
    Kim, Yoonha
    PLANTS-BASEL, 2022, 11 (13):
  • [45] High-throughput phenotyping for trait detection in vineyards
    Kicherer, Anna
    Herzog, Katja
    Toepfer, Reinhard
    38TH WORLD CONGRESS OF VINE AND WINE (PART 1), 2015, 5
  • [46] Radiomics: a primer on high-throughput image phenotyping
    Lafata, Kyle J.
    Wang, Yuqi
    Konkel, Brandon
    Yin, Fang-Fang
    Bashir, Mustafa R.
    ABDOMINAL RADIOLOGY, 2022, 47 (09) : 2986 - 3002
  • [47] High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana
    Awlia, Mariam
    Nigro, Arianna
    Faikus, Jirl
    Schmoeckel, Sandra M.
    Negrao, Sonia
    Santelia, Diana
    Trtilek, Martin
    Tester, Mark
    Julkowska, Magdalena M.
    Panzarova, Klara
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [48] High-throughput plant phenotyping: a role for metabolomics?
    Hall, Robert D.
    D'Auria, John C.
    Ferreira, Antonio C. Silva
    Gibon, Yves
    Kruszka, Dariusz
    Mishra, Puneet
    van de Zedde, Rick
    TRENDS IN PLANT SCIENCE, 2022, 27 (06) : 549 - 563
  • [49] High-throughput phenotyping technology for maize roots
    Grift, T. E.
    Novais, J.
    Bohn, M.
    BIOSYSTEMS ENGINEERING, 2011, 110 (01) : 40 - 48
  • [50] High-throughput physical phenotyping of cell differentiation
    Jonathan Lin
    Donghyuk Kim
    Henry T. Tse
    Peter Tseng
    Lillian Peng
    Manjima Dhar
    Saravanan Karumbayaram
    Dino Di Carlo
    Microsystems & Nanoengineering, 3