Block-sparse two-dimensional off-grid beamforming with arbitrary planar array geometry

被引:28
作者
Park, Yongsung [1 ]
Seong, Woojae [2 ,3 ]
Gerstoft, Peter [1 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[2] Seoul Natl Univ, Dept Naval Architecture & Ocean Engn, Seoul 08826, South Korea
[3] Seoul Natl Univ, Res Inst Marine Syst Engn, Seoul 08826, South Korea
关键词
TIP VORTEX CAVITATION; 2-D ANGLE ESTIMATION; RECONSTRUCTION; PROPELLER; MULTIPLE; NOISE; MODEL; LOCALIZATION; SIGNALS;
D O I
10.1121/10.0000983
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
For a sound field observed on a planar sensor array, compressive sensing (CS) reconstructs the two-dimensional (2D) direction-of-arrival (DOA) of multiple sources using a sparsity constraint. Conventional compressive beamforming methods suffer from grid mismatch, where true DOAs do not fall on the discretized angular search grid. This paper adopts a CS-based model, which can reconstruct block-sparse signals, and the model treats DOAs and the off-grid DOA compensation parts as blocks to deal with the off-grid 2D beamforming. The method is illustrated by numerical simulations and shows high estimation accuracy. Also, the approach does not require a specific array configuration and is suitable for arbitrary planar array geometry, which is practically useful. Since propeller tip vortex cavitation induces noise sources located sparsely near the propeller tip, the high-resolution of the method is demonstrated with experimental data from cavitation tunnel experiments.
引用
收藏
页码:2184 / 2191
页数:8
相关论文
共 42 条
[21]   Two-Dimensional Off-Grid DOA Estimation Using Unfolded Parallel Coprime Array [J].
Li, Jianfeng ;
Li, Yunxiang ;
Zhang, Xiaofei .
IEEE COMMUNICATIONS LETTERS, 2018, 22 (12) :2495-2498
[22]   A sparse signal reconstruction perspective for source localization with sensor arrays [J].
Malioutov, D ;
Çetin, M ;
Willsky, AS .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :3010-3022
[23]   EIGENSTRUCTURE TECHNIQUES FOR 2-D ANGLE ESTIMATION WITH UNIFORM CIRCULAR ARRAYS [J].
MATHEWS, CP ;
ZOLTOWSKI, MD .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (09) :2395-2407
[24]   Sequential Bayesian Sparse Signal Reconstruction Using Array Data [J].
Mecklenbraeuker, Christoph F. ;
Gerstoft, Peter ;
Panahi, Ashkan ;
Viberg, Mats .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (24) :6344-6354
[25]  
Nannuru S, 2019, INT CONF ACOUST SPEE, P4355, DOI 10.1109/ICASSP.2019.8682747
[26]   Sparse Bayesian learning with multiple dictionaries [J].
Nannuru, Santosh ;
Gemba, Kay L. ;
Gerstoft, Peter ;
Hodgkiss, William S. ;
Mecklenbraeuker, Christoph F. .
SIGNAL PROCESSING, 2019, 159 :159-170
[27]   Sparse Bayesian learning for beamforming using sparse linear arrays [J].
Nannuru, Santosh ;
Koochakzadeh, Ali ;
Gemba, Kay L. ;
Pal, Piya ;
Gerstoft, Peter .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 144 (05) :2719-2729
[28]   A study on propeller noise source localization in a cavitation tunnel [J].
Park, Cheolsoo ;
Seol, Hanshin ;
Kim, Kwangsoo ;
Seong, Woojae .
OCEAN ENGINEERING, 2009, 36 (9-10) :754-762
[29]   Grid-free compressive mode extraction [J].
Park, Yongsung ;
Gerstoft, Peter ;
Seong, Woojae .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 145 (03) :1427-1442
[30]   Multiple snapshot grid free compressive beamforming [J].
Park, Yongsung ;
Choo, Youngmin ;
Seong, Woojae .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2018, 143 (06) :3849-3859