Semilinear hyperbolic systems violating the null condition

被引:17
|
作者
Katayama, Soichiro [1 ]
Matoba, Toshiaki [2 ]
Sunagawa, Hideaki [3 ]
机构
[1] Wakayama Univ, Dept Math, Wakayama 6408510, Japan
[2] Osaka Prefectural Tennoji High Sch, Abeno Ku, Osaka 5450005, Japan
[3] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
NONLINEAR SCHRODINGER-EQUATIONS; KLEIN-GORDON SYSTEMS; WAVE-EQUATIONS; GLOBAL-SOLUTIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; DECAY;
D O I
10.1007/s00208-014-1071-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider systems of semilinear wave equations in three space dimensions with quadratic nonlinear terms not satisfying the null condition. We prove small data global existence of the classical solution under a new structural condition related to the weak null condition. For two-component systems satisfying this condition, we also observe a new kind of asymptotic behavior: Only one component is dissipated and the other one behaves like a non-trivial free solution in the large time.
引用
收藏
页码:275 / 312
页数:38
相关论文
共 50 条