Improvement and invariance analysis of Orthogonal Fourier-Mellin moments

被引:0
|
作者
Bin, Y [1 ]
Jia-Xiong, P
Qiu-Shi, R
Wan-Rong, L
机构
[1] Shanghai Jiao Tong Univ, Coll Life Sci & Technol, Inst Laser Med & Biophoton, Shanghai 200030, Peoples R China
[2] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, State Key Lab Image Proc & Intelligent Control, Wuhan 430074, Hubei, Peoples R China
关键词
Orthogonal Fourier-Mellin moments; invariance; shape; rotation; scale; image retrieval; trademark;
D O I
10.1142/S0218001403002757
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Orthogonal Fourier-Mellin (OFM) moments have better feature representation capabilities, and are more robust to image noise than the conventional Zernike moments and pseudo-Zernike moments. However, OFM moments have not been extensively used as feature descriptors since they do not possess scale invariance. This paper discusses the drawbacks of the existing methods of extracting OFM moments, and proposes an improved OFM moments. A part of the theory, which proves the improved OFM moments possesses invariance of rotation and scale, is given. The performance of the improved OFM moments is experimentally examined using trademark images, and the invariance of the improved OFM moments is shown to have been greatly improved over the current methods.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 50 条
  • [1] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Chandan Singh
    Rahul Upneja
    Journal of Mathematical Imaging and Vision, 2012, 44 : 411 - 431
  • [2] Accurate Computation of Orthogonal Fourier-Mellin Moments
    Singh, Chandan
    Upneja, Rahul
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (03) : 411 - 431
  • [3] Fractional Orthogonal Fourier-Mellin Moments for Pattern Recognition
    Zhang, Huaqing
    Li, Zongmin
    Liu, Yujie
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 766 - 778
  • [4] Image Reconstruction from Orthogonal Fourier-Mellin Moments
    Wang, Xiaoyu
    Liao, Simon
    IMAGE ANALYSIS AND RECOGNITION, 2013, 7950 : 687 - 694
  • [5] Fast numerically stable computation of orthogonal Fourier-Mellin moments
    Papakostas, G. A.
    Boutalis, Y. S.
    Karras, D. A.
    Mertzios, B. G.
    IET COMPUTER VISION, 2007, 1 (01) : 11 - 16
  • [6] Computation of orthogonal Fourier-Mellin moments in two coordinate systems
    Hu, Hai-tao
    Zi-liang, Ping
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (05) : 1080 - 1084
  • [7] Fast computation of orthogonal Fourier-Mellin moments in polar coordinates
    Hosny, Khalid Mohamed
    Shouman, Mohamed A.
    Salam, Hayam M. Abdel
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2011, 6 (02) : 73 - 80
  • [8] Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments
    Kan, C
    Srinath, MD
    PATTERN RECOGNITION, 2002, 35 (01) : 143 - 154
  • [9] Subpixel edge location based on orthogonal Fourier-Mellin moments
    Bin, T. J.
    Lei, Ao
    Jiwen, Cui
    Wenjing, Kang
    Dandan, Liu
    IMAGE AND VISION COMPUTING, 2008, 26 (04) : 563 - 569
  • [10] ORTHOGONAL FOURIER-MELLIN MOMENTS FOR INVARIANT PATTERN-RECOGNITION
    SHENG, YL
    SHEN, LX
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1748 - 1757