Multiparameter quantum metrology with discrete-time quantum walks

被引:10
作者
Annabestani, Mostafa [1 ]
Hassani, Majid [2 ]
Tamascelli, Dario [3 ,4 ]
Paris, Matteo G. A. [3 ,4 ,5 ]
机构
[1] Shahrood Univ Technol, Fac Phys, POB 3619995161, Shahrood, Iran
[2] Sorbonne Univ, CNRS, LIP6, 4 Pl Jussieu, F-75005 Paris, France
[3] Univ Milan, Quantum Technol Lab, Dipartimento Fis Aldo Pontremoli, I-20133 Milan, Italy
[4] Univ Milan, Appl Quantum Mech Grp, Dipartimento Fis Aldo Pontremoli, I-20133 Milan, Italy
[5] INFN, Sez Milano, I-20133 Milan, Italy
关键词
D O I
10.1103/PhysRevA.105.062411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We address multiparameter quantum estimation for one-dimensional discrete-time quantum walks and its applications to quantum metrology. We use the quantum walker as a probe for the unknown parameters encoded in its coin degrees of freedom. We find an analytic expression of the quantum Fisher information matrix for the most general coin operator, and show that only two out of the three coin parameters can be accessed. We also prove that the resulting two-parameter coin model is asymptotically classical, i.e., the Uhlmann curvature vanishes. Finally, we apply our findings to relevant case studies, including the simultaneous estimation of charge and mass in the discretized Dirac model.
引用
收藏
页数:11
相关论文
共 61 条
  • [1] Acernese F, 2019, PHYS REV LETT
  • [2] QUANTUM RANDOM-WALKS
    AHARONOV, Y
    DAVIDOVICH, L
    ZAGURY, N
    [J]. PHYSICAL REVIEW A, 1993, 48 (02): : 1687 - 1690
  • [3] A perspective on multiparameter quantum metrology: From theoretical tools to applications in quantum imaging
    Albarelli, F.
    Barbieri, M.
    Genoni, M. G.
    Gianani, I
    [J]. PHYSICS LETTERS A, 2020, 384 (12)
  • [4] Evaluating the Holevo Cramer-Rao Bound for Multiparameter Quantum Metrology
    Albarelli, Francesco
    Friel, Jamie F.
    Datta, Animesh
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [5] Quantum walk algorithm for element distinctness
    Ambainis, Andris
    [J]. SIAM JOURNAL ON COMPUTING, 2007, 37 (01) : 210 - 239
  • [6] Decoherence in a one-dimensional quantum walk
    Annabestani, Mostafa
    Akhtarshenas, Seyed Javad
    Abolhassani, Mohamad Reza
    [J]. PHYSICAL REVIEW A, 2010, 81 (03):
  • [7] Precision bounds for gradient magnetometry with atomic ensembles
    Apellaniz, Iagoba
    Urizar-Lanz, Inigo
    Zimboras, Zoltan
    Hyllus, Philipp
    Toth, Geza
    [J]. PHYSICAL REVIEW A, 2018, 97 (05)
  • [8] Discrete-time quantum walks as fermions of lattice gauge theory
    Arnault, Pablo
    Perez, Armando
    Arrighi, Pablo
    Farrelly, Terry
    [J]. PHYSICAL REVIEW A, 2019, 99 (03)
  • [9] Landau levels for discrete-time quantum walks in artificial magnetic fields
    Arnault, Pablo
    Debbasch, Fabrice
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 443 : 179 - 191
  • [10] Dirac equation as a quantum walk over the honeycomb and triangular lattices
    Arrighi, Pablo
    Di Molfetta, Giuseppe
    Marquez-Martin, Ivan
    Perez, Armando
    [J]. PHYSICAL REVIEW A, 2018, 97 (06)