Geophysical and cosmochemical evidence for a volatile-rich Mars

被引:62
作者
Khan, A. [1 ,2 ]
Sossi, P. A. [3 ]
Liebske, C. [3 ]
Rivoldini, A. [4 ]
Giardini, D. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Geophys, Zurich, Switzerland
[2] Univ Zurich, Phys Inst, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Geochem & Petrol, Zurich, Switzerland
[4] Royal Observ Belgium, Brussels, Belgium
基金
瑞士国家科学基金会;
关键词
Mars; InSight; seismology; interior structure; mantle and core composition; core formation; HIGH-PRESSURE IMPLICATIONS; CONDENSATION TEMPERATURES; EXPERIMENTAL CONSTRAINTS; TERRESTRIAL PLANETS; MARTIAN METEORITES; BULK COMPOSITION; CORE FORMATION; MANTLE; OXYGEN; ELEMENTS;
D O I
10.1016/j.epsl.2021.117330
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Constraints on the composition of Mars principally derive from chemical analyses of a set of Martian meteorites that rely either on determinations of their refractory element abundances or isotopic compositions. Both approaches, however, lead to models of Mars that are unable to self-consistently explain major element chemistry and match its observed geophysical properties, unless ad hoc adjustments to key parameters, namely, bulk Fe/Si ratio, core composition, and/or core size are made. Here, we combine geophysical observations, including high-quality seismic data acquired with the InSight mission, with a cosmochemical model to constrain the composition of Mars. We find that the FeO content of Mars' mantle is 13.7 +/- 0.4 wt%, corresponding to a Mg# of 0.81 +/- 0.01. Because of the lower FeO content of the mantle, compared with previous estimates, we obtain a higher mean core density of 6150 +/- 46 kg/m(3) than predicted by recent seismic observations, yet our estimate for the core radius remains consistent around 1840 +/- 10 km, corresponding to a core mass fraction of 0.250 +/- 0.005. Relying on cosmochemical constraints, volatile element behaviour, and planetary building blocks that match geophysical and isotopic signatures of Martian meteorites, we find that the liquid core is made up of 88.4 +/- 3.9 wt% Fe-Ni-Co with light elements making up the rest. To match the mean core density constraint, we predict, based on experimentally-determined thermodynamic solution models, a light element abundance in the range of approximate to 9 wt% S, >= 3 wt% C, <= 2.5 wt% O, and <= 0.5 wt% H, supporting the notion of a volatile-rich Mars. To accumulate sufficient amounts of these volatile elements, Mars must have formed before the nebular gas dispersed and/or, relative to Earth, accreted a higher proportion of planetesimals from the outer protoplanetary disk where volatiles condensed more readily. (C) 2021 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:16
相关论文
共 92 条
[1]   Experimental constraints on the origin of Martian meteorites and the composition of the Martian mantle [J].
Agee, CB ;
Draper, DS .
EARTH AND PLANETARY SCIENCE LETTERS, 2004, 224 (3-4) :415-429
[2]   Partitioning of FeO between magnesiowustite and liquid iron at high pressures and temperatures: Implications for the composition of the Earth's outer core [J].
Asahara, Y. ;
Frost, D. J. ;
Rubie, D. C. .
EARTH AND PLANETARY SCIENCE LETTERS, 2007, 257 (3-4) :435-449
[3]  
Badding J V., 1992, HIGH PRESSURE RES AP, P363
[4]   A seismologically consistent compositional model of Earth's core [J].
Badro, James ;
Cote, Alexander S. ;
Brodholt, John P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (21) :7542-7545
[5]   Tidal Response of Mars Constrained From Laboratory-Based Viscoelastic Dissipation Models and Geophysical Data [J].
Bagheri, A. ;
Khan, A. ;
Al-Attar, D. ;
Crawford, O. ;
Giardini, D. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2019, 124 (11) :2703-2727
[6]   FactSage thermochemical software and databases - recent developments [J].
Bale, C. W. ;
Belisle, E. ;
Chartrand, P. ;
Decterov, S. A. ;
Eriksson, G. ;
Hack, K. ;
Jung, I. -H. ;
Kang, Y. -B. ;
Melancon, J. ;
Pelton, A. D. ;
Robelin, C. ;
Petersen, S. .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2009, 33 (02) :295-311
[7]   Initial results from the InSight mission on Mars [J].
Banerdt, W. Bruce ;
Smrekar, Suzanne E. ;
Banfield, Don ;
Giardini, Domenico ;
Golombek, Matthew ;
Johnson, Catherine L. ;
Lognonne, Philippe ;
Spiga, Aymeric ;
Spohn, Tilman ;
Perrin, Clement ;
Staehler, Simon C. ;
Antonangeli, Daniele ;
Asmar, Sami ;
Beghein, Caroline ;
Bowles, Neil ;
Bozdag, Ebru ;
Chi, Peter ;
Christensen, Ulrich ;
Clinton, John ;
Collins, Gareth S. ;
Daubar, Ingrid ;
Dehant, Veronique ;
Drilleau, Melanie ;
Fillingim, Matthew ;
Folkner, William ;
Garcia, Raphael F. ;
Garvin, Jim ;
Grant, John ;
Grott, Matthias ;
Grygorczuk, Jerzy ;
Hudson, Troy ;
Irving, Jessica C. E. ;
Kargl, Guenter ;
Kawamura, Taichi ;
Kedar, Sharon ;
King, Scott ;
Knapmeyer-Endrun, Brigitte ;
Knapmeyer, Martin ;
Lemmon, Mark ;
Lorenz, Ralph ;
Maki, Justin N. ;
Margerin, Ludovic ;
McLennan, Scott M. ;
Michaut, Chloe ;
Mimoun, David ;
Mittelholz, Anna ;
Mocquet, Antoine ;
Morgan, Paul ;
Mueller, Nils T. ;
Murdoch, Naomi .
NATURE GEOSCIENCE, 2020, 13 (03) :183-+
[8]   Evidence for extremely rapid magma ocean crystallization and crust formation on Mars [J].
Bouvier, Laura C. ;
Costa, Maria M. ;
Connelly, James N. ;
Jensen, Ninna K. ;
Wielandt, Daniel ;
Storey, Michael ;
Nemchin, Alexander A. ;
Whitehouse, Martin J. ;
Snape, Joshua F. ;
Bellucci, Jeremy J. ;
Moynier, Frederic ;
Agranier, Arnaud ;
Gueguen, Bleuenn ;
Schonbachler, Maria ;
Bizzarro, Martin .
NATURE, 2018, 558 (7711) :586-+
[9]   Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars [J].
Boynton, W. V. ;
Taylor, G. J. ;
Evans, L. G. ;
Reedy, R. C. ;
Starr, R. ;
Janes, D. M. ;
Kerry, K. E. ;
Drake, D. M. ;
Kim, K. J. ;
Williams, R. M. S. ;
Crombie, M. K. ;
Dohm, J. M. ;
Baker, V. ;
Metzger, A. E. ;
Karunatillake, S. ;
Keller, J. M. ;
Newsom, H. E. ;
Arnold, J. R. ;
Brueckner, J. ;
Englert, P. A. J. ;
Gasnault, O. ;
Sprague, A. L. ;
Mitrofanov, I. ;
Squyres, S. W. ;
Trombka, J. I. ;
d'Uston, L. ;
Waenke, H. ;
Hamara, D. K. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2007, 112 (E12)
[10]   Core formation and geophysical properties of Mars [J].
Brennan, Matthew C. ;
Fischer, Rebecca A. ;
Irving, Jessica C. E. .
EARTH AND PLANETARY SCIENCE LETTERS, 2020, 530