Gaussian decay of harmonic oscillators and related models

被引:5
作者
Cassano, B. [1 ]
Fanelli, L. [2 ]
机构
[1] BCAM, Alameda Mazarredo 14, Bilbao 48009, Basque Country, Spain
[2] SAPIENZA Univ Roma, Dipartimento Matemat, Ple A Moro 5, I-00185 Rome, Italy
关键词
Schrodinger equation; Uniform electric potentials; Uniform magnetic potentials; Harmonic oscillator; Unique continuation; Uncertainty principle; HARDY UNCERTAINTY PRINCIPLE; NON-INERTIAL FRAMES; SCHRODINGER EVOLUTIONS; QUANTUM DYNAMICS; UNIQUE CONTINUATION; EQUATIONS; POTENTIALS; CONVEXITY;
D O I
10.1016/j.jmaa.2017.06.067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the decay of the eigenfunctions of harmonic oscillators, uniform electric or magnetic fields is not stable under 0-order complex perturbations, even if bounded, of these Hamiltonians, in the sense that we can produce solutions to the evolutionary Schrodinger flows associated to the Hamiltonians, with a stronger Gaussian decay at two distinct times. We then characterize, in a quantitative way, the sharpest possible Gaussian decay of solutions as a function of the oscillation frequency or the strength of the field, depending on the Hamiltonian which is considered. This is connected to the Hardy's Uncertainty Principle for free Schrodinger evolutions. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:214 / 228
页数:15
相关论文
共 25 条
  • [1] Hardy uncertainty principle and unique continuation properties of covariant Schrodinger flows
    Barcelo, J. A.
    Fanelli, L.
    Gutierrez, S.
    Ruiz, A.
    Vilela, M. C.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (10) : 2386 - 2415
  • [2] ON THE TRANSFORMATION OF DIFFUSION-PROCESSES INTO THE WIENER PROCESS
    BLUMAN, GW
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1980, 39 (02) : 238 - 247
  • [3] ON MAPPING LINEAR PARTIAL-DIFFERENTIAL EQUATIONS TO CONSTANT COEFFICIENT EQUATIONS
    BLUMAN, GW
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (06) : 1259 - 1273
  • [4] Bonami A, 2006, COLLECT MATH, P1
  • [5] BOYER CP, 1975, HELV PHYS ACTA, V47, P589
  • [6] Cassano B, 2015, T AM MATH SOC, V367, P2213
  • [7] The Hardy Uncertainty Principle Revisited
    Cowling, M.
    Escauriaza, L.
    Kenig, C. E.
    Ponce, G.
    Vega, L.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (06) : 2007 - 2025
  • [8] Unique continuation at infinity of solutions to Schrodinger equations with complex-valued potentials
    Cruz-Sampedro, J
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1999, 42 : 143 - 153
  • [9] Davey B., 2017, T AM MATH SOC
  • [10] Escauriaza L, 2008, J EUR MATH SOC, V10, P883