Focusing properties of Lorentz-Gaussian beam with azimuthally-variant phase filters

被引:2
作者
Li, Jinsong [1 ]
Sang, Pengpeng [1 ]
Shi, Peng [1 ]
Gao, Xiumin [2 ]
Wang, Xiumin [1 ]
机构
[1] China Jiliang Univ, Coll Opt & Elect Technol, Hangzhou 310018, Zhejiang, Peoples R China
[2] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
来源
OPTIK | 2017年 / 144卷
关键词
Lorentz-Gaussian beam; Focusing properties; Phase filters; Vector beam; FRACTIONAL FOURIER-TRANSFORM; OPTICAL VORTEX; FOCAL SHIFT; LASER-BEAMS; FAR-FIELD; PROPAGATION; VORTICES; SYSTEM; FORCE; SPACE;
D O I
10.1016/j.ijleo.2017.05.097
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical vortex attracts many researchers for its interesting properties and promising applications. Focusing properties of the linearly polarized Lorentz-Gaussian beam with azimuthally-variant phase filters were investigated by vector diffraction theory. Results show that the focal intensity distributions can be altered considerably by phase variation parameter of phase filter and the beam parameters, changing phase variation parameter of the phase mask, focal shift, focal switch and focal split may occur, simultaneously, the focal shift direction may change. Moreover, altering phase variation parameter will change the energy distributions of maximum intensity peak and other small intensity peaks. And novel focal patterns also evolve considerably, such as from only one peak to multiple peaks. The focal pattern evolution principle is different with different beam parameter. The tunable focal shift can be used to construct controllable optical tweezers. In practice, azimuthally variant phase filters can be implemented through phase-only spatial light modulator, which can conveniently alter the wavefront phase distribution of the incident laser beam in the control of computer. (C) 2017 Elsevier GmbH. All rights reserved.
引用
收藏
页码:459 / 466
页数:8
相关论文
共 28 条
  • [1] [Anonymous], 2000, ADV OPTICAL IMAGING
  • [2] Integrated Compact Optical Vortex Beam Emitters
    Cai, Xinlun
    Wang, Jianwei
    Strain, Michael J.
    Johnson-Morris, Benjamin
    Zhu, Jiangbo
    Sorel, Marc
    O'Brien, Jeremy L.
    Thompson, Mark G.
    Yu, Siyuan
    [J]. SCIENCE, 2012, 338 (6105) : 363 - 366
  • [3] Casey H C, 1978, Heterostructure lasers Part A
  • [4] Plasmonic tomography of optical vortices
    Chimento, Philip F.
    't Hooft, Gert W.
    Eliel, Eric R.
    [J]. OPTICS LETTERS, 2010, 35 (22) : 3775 - 3777
  • [5] Isolated optical vortex knots
    Dennis, Mark R.
    King, Robert P.
    Jack, Barry
    O'Holleran, Kevin
    Padgett, Miles J.
    [J]. NATURE PHYSICS, 2010, 6 (02) : 118 - 121
  • [6] Propagation of Lorentz and Lorentz-Gauss beams through an apertured fractional Fourier transform optical system
    Du, Wen
    Zhao, Chengliang
    Cai, Yangjian
    [J]. OPTICS AND LASERS IN ENGINEERING, 2011, 49 (01) : 25 - 31
  • [7] DUMKE WP, 1975, IEEE J QUANTUM ELECT, VQE11, P400, DOI 10.1109/JQE.1975.1068627
  • [8] Lorentz beams and symmetry properties in paraxial optics
    El Gawhary, O
    Severini, S
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2006, 8 (05): : 409 - 414
  • [9] Lorentz beams as a basis for a new class of rectangularly symmetric optical fields
    El Gawhary, Omar
    Severini, Sergio
    [J]. OPTICS COMMUNICATIONS, 2007, 269 (02) : 274 - 284
  • [10] Sine-azimuthal wavefront-modulated cosh-Gaussian beams with half-space amplitude modulation
    Fu, Rui
    Gao, Xiumin
    Shen, Haibin
    Xin, Qing
    Lu, Xinmiao
    [J]. OPTIK, 2014, 125 (05): : 1687 - 1693