Quantum computing for atomic and molecular resonances

被引:9
作者
Bian, Teng
Kais, Sabre [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
STATES;
D O I
10.1063/5.0040477
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The complex-scaling method can be used to calculate molecular resonances within the Born-Oppenheimer approximation, assuming that the electronic coordinates are dilated independently of the nuclear coordinates. With this method, one will calculate the complex energy of a non-Hermitian Hamiltonian, whose real part is associated with the resonance position and imaginary part is the inverse of the lifetime. In this study, we propose techniques to simulate resonances on a quantum computer. First, we transformed the scaled molecular Hamiltonian to second quantization and then used the Jordan-Wigner transformation to transform the scaled Hamiltonian to the qubit space. To obtain the complex eigenvalues, we introduce the direct measurement method, which is applied to obtain the resonances of a simple one-dimensional model potential that exhibits pre-dissociating resonances analogous to those found in diatomic molecules. Finally, we applied the method to simulate the resonances of the H2- molecule. The numerical results from the IBM Qiskit simulators and IBM quantum computers verify our techniques.
引用
收藏
页数:12
相关论文
共 37 条
[1]   CLASS OF ANALYTIC PERTURBATIONS FOR ONE-BODY SCHRODINGER HAMILTONIANS [J].
AGUILAR, J ;
COMBES, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (04) :269-&
[2]  
Aleksandrowicz, QISKIT OPEN SOURCE F
[3]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[4]   SPECTRAL PROPERTIES OF MANY-BODY SCHRODINGER OPERATORS WITH DILATATION-ANALYTIC INTERACTIONS [J].
BALSLEV, E ;
COMBES, JM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (04) :280-&
[5]   Ab Initio Complex Transition Dipoles between Autoionizing Resonance States from Real Stabilization Graphs [J].
Bhattacharya, Debarati ;
Landau, Arie ;
Moiseyev, Nimrod .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (14) :5601-5609
[6]   Quantum computing methods for electronic states of the water molecule [J].
Bian, Teng ;
Murphy, Daniel ;
Xia, Rongxin ;
Daskin, Ammar ;
Kais, Sabre .
MOLECULAR PHYSICS, 2019, 117 (15-16) :2069-2082
[7]   Quantum Chemistry in the Age of Quantum Computing [J].
Cao, Yudong ;
Romero, Jonathan ;
Olson, Jonathan P. ;
Degroote, Matthias ;
Johnson, Peter D. ;
Kieferova, Maria ;
Kivlichan, Ian D. ;
Menke, Tim ;
Peropadre, Borja ;
Sawaya, Nicolas P. D. ;
Sim, Sukin ;
Veis, Libor ;
Aspuru-Guzik, Alan .
CHEMICAL REVIEWS, 2019, 119 (19) :10856-10915
[8]   Context-aware quantum simulation of a matrix stored in quantum memory [J].
Daskin, Ammar ;
Bian, Teng ;
Xia, Rongxin ;
Kais, Sabre .
QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
[9]   Direct application of the phase estimation algorithm to find the eigenvalues of the Hamiltonians [J].
Daskin, Ammar ;
Kais, Sabre .
CHEMICAL PHYSICS, 2018, 514 :87-94
[10]   A universal quantum circuit scheme for finding complex eigenvalues [J].
Daskin, Anmer ;
Grama, Ananth ;
Kais, Sabre .
QUANTUM INFORMATION PROCESSING, 2014, 13 (02) :333-353