An S-plus implementation of hidden Markov models in continuous time

被引:11
作者
Bureau, A
Hughes, JP
Shiboski, SC
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Grp Biostat, Berkeley, CA 94720 USA
[2] Univ Washington, Sch Publ Hlth & Community Med, Dept Biostat 357232, Seattle, WA 98195 USA
[3] Univ Calif San Francisco, Sch Med, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
关键词
generalized regression; longitudinal data;
D O I
10.2307/1391083
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hidden Markov models (HMM) can be applied to the study of time varying unobserved categorical Variables for which only indirect measurements are available. An S-Plus module to fit HMMs in continuous time to this type of longitudinal data is presented. Covariates affecting the transition intensities of the hidden Markov process or the conditional distribution of the measured response (given the hidden states of the process) are handled under a generalized regression framework. Users can provide C subroutines specifying the parameterization of the model to adapt the software to a wide variety of data types. HMM analysis using the S-Plus module is illustrated on a dataset from a prospective study of human papillomavirus infection in young women and on simulated data.
引用
收藏
页码:621 / 632
页数:12
相关论文
共 15 条
[1]  
Allen D. M., 1987, Computer Science and Statistics: Proceedings of the 19th Symposium on the Interface, P43
[2]   A MAXIMIZATION TECHNIQUE OCCURRING IN STATISTICAL ANALYSIS OF PROBABILISTIC FUNCTIONS OF MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T ;
SOULES, G ;
WEISS, N .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (01) :164-&
[3]  
Chambers J.M., 1998, PROGRAMMING DATA GUI
[4]  
Chambers J.M., 1991, Statistical Models in S
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Gill PhilipE., 1986, USERS GUIDE NPSOL VE
[7]   Computing the observed information in the hidden Markov model using the EM algorithm [J].
Hughes, JP .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (01) :107-114
[8]  
HUGHES JP, 1993, THESIS U WASHINGTON
[9]  
Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI [DOI 10.1080/10618600.1996.10474713, 10.1080/10618600.1996.10474713, 10.2307/1390807]
[10]   The analysis of longitudinal ordinal response data in continuous time [J].
Kosorok, MR ;
Chao, WH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :807-817