The Stokes and Navier-Stokes equations in an aperture domain

被引:11
作者
Kubo, Takayuki [1 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
navier-stokes equations; sokes equations; aperture domain; L-p-L-q estimate;
D O I
10.2969/jmsj/05930837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonstationary Stokes and Navier-Stokes equations in an aperture domain Omega subset of R-n, n >= 2. For this purpose, we prove L-p-L-q type estimate of the Stokes semigroup in the aperture domain. Our proof is based on the local energy decay estimate obtained by investigation of the asymptotic behavior of the resolvent of the Stokes operator near the origin. We apply them to the Navier-Stokes initial value problem in the aperture domain. As a result, we can prove the global existence of a unique solution to the Navier-Stokes problem with the vanishing flux condition and some decay properties as t -> infinity, when the initial velocity is sufficiently small in the L-n space. Moreover we can prove the time-local existence of a unique solution to the Navier-Stokes problem with the non-trivial flux condition.
引用
收藏
页码:837 / 859
页数:23
相关论文
共 50 条
[11]   FRACTIONAL NAVIER-STOKES EQUATIONS [J].
Cholewa, Jan W. ;
Dlotko, Tomasz .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08) :2967-2988
[12]   Euler and Navier-Stokes equations [J].
Constantin, Peter .
PUBLICACIONS MATEMATIQUES, 2008, 52 (02) :235-265
[13]   STOCHASTIC NAVIER-STOKES EQUATIONS [J].
BENSOUSSAN, A .
ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) :267-304
[14]   Navier-Stokes equations with delays [J].
Caraballo, T ;
Real, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014) :2441-2453
[15]   On modifications of the Navier-Stokes equations [J].
Kobelkov, Georgij M. .
RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2015, 30 (02) :87-93
[16]   Stabilization of Navier-Stokes Equations [J].
Barbu, Viorel .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2) :107-116
[17]   Navier-stokes equations with navier boundary conditions for a bounded domain in the plane [J].
Kelliher, James P. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (01) :210-232
[18]   Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions [J].
Raymond, J. -P. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06) :921-951
[19]   ON A FREE PISTON PROBLEM FOR STOKES AND NAVIER-STOKES EQUATIONS [J].
Muha, Boris ;
Tutek, Zvonimir .
GLASNIK MATEMATICKI, 2012, 47 (02) :381-400
[20]   STOKES AND NAVIER-STOKES EQUATIONS WITH A NONHOMOGENEOUS DIVERGENCE CONDITION [J].
Raymond, Jean-Pierre .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 14 (04) :1537-1564