The Stokes and Navier-Stokes equations in an aperture domain

被引:11
|
作者
Kubo, Takayuki [1 ]
机构
[1] Waseda Univ, Fac Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan
关键词
navier-stokes equations; sokes equations; aperture domain; L-p-L-q estimate;
D O I
10.2969/jmsj/05930837
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonstationary Stokes and Navier-Stokes equations in an aperture domain Omega subset of R-n, n >= 2. For this purpose, we prove L-p-L-q type estimate of the Stokes semigroup in the aperture domain. Our proof is based on the local energy decay estimate obtained by investigation of the asymptotic behavior of the resolvent of the Stokes operator near the origin. We apply them to the Navier-Stokes initial value problem in the aperture domain. As a result, we can prove the global existence of a unique solution to the Navier-Stokes problem with the vanishing flux condition and some decay properties as t -> infinity, when the initial velocity is sufficiently small in the L-n space. Moreover we can prove the time-local existence of a unique solution to the Navier-Stokes problem with the non-trivial flux condition.
引用
收藏
页码:837 / 859
页数:23
相关论文
共 50 条
  • [1] THE NAVIER-STOKES EQUATIONS ON A BOUNDED DOMAIN
    SCHEFFER, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 73 (01) : 1 - 42
  • [2] On α Navier-Stokes equations on a bounded domain
    Busuioc, AV
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) : 823 - 826
  • [3] Nonlinear artificial boundary conditions for the Navier-Stokes equations in an aperture domain
    Nazarov, SA
    Specovius-Neugebauer, M
    Videman, JH
    MATHEMATISCHE NACHRICHTEN, 2004, 265 : 24 - 67
  • [4] Limits of the Stokes and Navier-Stokes equations in a punctured periodic domain
    Chipot, Michel
    Droniou, Jerome
    Planas, Gabriela
    Robinson, James C.
    Xue, Wei
    ANALYSIS AND APPLICATIONS, 2020, 18 (02) : 211 - 235
  • [5] Strong solutions of the Navier-Stokes equations in aperture domains
    Franzke M.
    Annali dell’Università di Ferrara, 2000, 46 (1): : 161 - 173
  • [6] A fictitious domain method for Navier-Stokes equations
    Girault, V
    Glowinski, R
    Lopez, H
    Vila, JP
    COMPUTATIONAL SCIENCE FOR THE 21ST CENTURY, 1997, : 149 - 159
  • [7] NAVIER-STOKES EQUATIONS
    STUART, CA
    QUARTERLY JOURNAL OF MATHEMATICS, 1971, 22 (86): : 309 - &
  • [8] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [9] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [10] Convergence of the relaxed compressible Navier-Stokes equations to the incompressible Navier-Stokes equations
    Ju, Qiangchang
    Wang, Zhao
    APPLIED MATHEMATICS LETTERS, 2023, 141