Local Antimagic Chromatic Number for Copies of Graphs

被引:12
作者
Baca, Martin [1 ]
Semanicova-Fenovcikova, Andrea [1 ]
Wang, Tao-Ming [2 ]
机构
[1] Tech Univ, Dept Appl Math & Informat, Kosice 04200, Slovakia
[2] Tunghai Univ, Dept Appl Math, Taichung 40704, Taiwan
关键词
local antimagic labeling; local antimagic chromatic number; copies of graphs; GRIDS;
D O I
10.3390/math9111230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a graph G = (V ,E) using every label from the set {1,2, ... vertical bar E(G)vertical bar} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.
引用
收藏
页数:12
相关论文
共 40 条
[31]   Graphs admitting antimagic labeling for arbitrary sets of positive numbers [J].
Matamala, Martin ;
Zamora, Jose .
DISCRETE APPLIED MATHEMATICS, 2020, 281 :246-251
[32]   On Local Antimagic Vertex Coloring for Complete Full t-ary Trees [J].
Baca, Martin ;
Semanicova-Fenovcikova, Andrea ;
Lai, Ruei-Ting ;
Wang, Tao-Ming .
FUNDAMENTA INFORMATICAE, 2022, 185 (02) :99-113
[33]   A note on the oriented chromatic number of grids [J].
Szepietowski, A ;
Targan, M .
INFORMATION PROCESSING LETTERS, 2004, 92 (02) :65-70
[34]   Cartesian Products of Some Regular Graphs Admitting Antimagic Labeling for Arbitrary Sets of Real Numbers [J].
Chang, Yi-Wu ;
Liu, Shan-Pang .
JOURNAL OF MATHEMATICS, 2021, 2021
[35]   Computing the scattering number of graphs [J].
Zhang, SG ;
Li, XL ;
Han, XL .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (02) :179-187
[36]   Oriented chromatic number of grids is greater than 7 [J].
Dybizbanski, Janusz ;
Nenca, Anna .
INFORMATION PROCESSING LETTERS, 2012, 112 (04) :113-117
[37]   2-Edge-Colored Chromatic Number of Grids is at Most 9 [J].
Janusz Dybizbański .
Graphs and Combinatorics, 2020, 36 :831-837
[38]   2-Edge-Colored Chromatic Number of Grids is at Most 9 [J].
Dybizbanski, Janusz .
GRAPHS AND COMBINATORICS, 2020, 36 (03) :831-837
[39]   The asymptotic number of spanning trees in circulant graphs [J].
Golin, Mordecai J. ;
Yong, Xuerong ;
Zhang, Yuanping .
DISCRETE MATHEMATICS, 2010, 310 (04) :792-803
[40]   The (t, r) broadcast domination number of some regular graphs [J].
Herrman, Rebekah ;
van Hintum, Peter .
DISCRETE APPLIED MATHEMATICS, 2021, 289 :270-280