Local Antimagic Chromatic Number for Copies of Graphs

被引:12
作者
Baca, Martin [1 ]
Semanicova-Fenovcikova, Andrea [1 ]
Wang, Tao-Ming [2 ]
机构
[1] Tech Univ, Dept Appl Math & Informat, Kosice 04200, Slovakia
[2] Tunghai Univ, Dept Appl Math, Taichung 40704, Taiwan
关键词
local antimagic labeling; local antimagic chromatic number; copies of graphs; GRIDS;
D O I
10.3390/math9111230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a graph G = (V ,E) using every label from the set {1,2, ... vertical bar E(G)vertical bar} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.
引用
收藏
页数:12
相关论文
共 40 条
  • [21] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [22] Local antimagic vertex coloring of a Myceilski of graphs
    Sethukkarasi, A.
    Vidyanandini, S.
    Nayak, Soumya Ranjan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (04) : 1389 - 1401
  • [23] Local antimagic vertex coloring for generalized friendship graphs
    Nalliah, M.
    Shankar, R.
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (04) : 1063 - 1078
  • [24] Local Face Antimagic Evaluations and Coloring of Plane Graphs
    Bong, Novi
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Sugeng, Kiki A.
    Wang, Tao-Ming
    FUNDAMENTA INFORMATICAE, 2020, 174 (02) : 103 - 119
  • [25] The oriented chromatic number of Hahn graphs
    Dybizbanski, Janusz
    Szepietowski, Andrzej
    INFORMATION PROCESSING LETTERS, 2014, 114 (1-2) : 45 - 49
  • [26] Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python']Python
    Alam, Luqman
    Semanicova-Fenovcikova, Andrea
    Popa, Ioan-Lucian
    SYMMETRY-BASEL, 2025, 17 (01):
  • [27] Local Antimagic Vertex Coloring of a Graph
    S. Arumugam
    K. Premalatha
    Martin Bača
    Andrea Semaničová-Feňovčíková
    Graphs and Combinatorics, 2017, 33 : 275 - 285
  • [28] Local Antimagic Vertex Coloring of a Graph
    Arumugam, S.
    Premalatha, K.
    Baa, Martin
    Semanicova-Fenovcikova, Andrea
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 275 - 285
  • [29] Antimagic labeling and canonical decomposition of graphs
    Barrus, Michael D.
    INFORMATION PROCESSING LETTERS, 2010, 110 (07) : 261 - 263
  • [30] Weighted-1-antimagic graphs of prime power order
    Huang, Po-Yi
    Wong, Tsai-Lien
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2012, 312 (14) : 2162 - 2169