Local Antimagic Chromatic Number for Copies of Graphs

被引:12
作者
Baca, Martin [1 ]
Semanicova-Fenovcikova, Andrea [1 ]
Wang, Tao-Ming [2 ]
机构
[1] Tech Univ, Dept Appl Math & Informat, Kosice 04200, Slovakia
[2] Tunghai Univ, Dept Appl Math, Taichung 40704, Taiwan
关键词
local antimagic labeling; local antimagic chromatic number; copies of graphs; GRIDS;
D O I
10.3390/math9111230
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a graph G = (V ,E) using every label from the set {1,2, ... vertical bar E(G)vertical bar} exactly once is a local antimagic labeling if the vertex-weights are distinct for every pair of neighboring vertices, where a vertex-weight is the sum of labels of all edges incident with that vertex. Any local antimagic labeling induces a proper vertex coloring of G where the color of a vertex is its vertex-weight. This naturally leads to the concept of a local antimagic chromatic number. The local antimagic chromatic number is defined to be the minimum number of colors taken over all colorings of G induced by local antimagic labelings of G. In this paper, we estimate the bounds of the local antimagic chromatic number for disjoint union of multiple copies of a graph.
引用
收藏
页数:12
相关论文
共 18 条
[1]   Dense graphs are antimagic [J].
Alon, N ;
Kaplan, G ;
Lev, A ;
Roditty, Y ;
Yuster, R .
JOURNAL OF GRAPH THEORY, 2004, 47 (04) :297-309
[2]   Local Antimagic Vertex Coloring of a Graph [J].
Arumugam, S. ;
Premalatha, K. ;
Baa, Martin ;
Semanicova-Fenovcikova, Andrea .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :275-285
[3]  
Arumugam S., 2018, ARXIV2018180804956
[4]  
Baa M., 2020, J DISCRET MATH SCI C, DOI [10.1080/09720529.2020.1772985, DOI 10.1080/09720529.2020.1772985]
[5]  
Bensmail J, 2017, DISCRETE MATH THEOR, V19
[6]  
Bérczi K, 2015, ELECTRON J COMB, V22
[7]   Antimagic Labeling of Regular Graphs [J].
Chang, Feihuang ;
Liang, Yu-Chang ;
Pan, Zhishi ;
Zhu, Xuding .
JOURNAL OF GRAPH THEORY, 2016, 82 (04) :339-349
[8]  
Chartrand G., 2005, Graphs and Digraphs, DOI DOI 10.1201/B19731
[9]   Lattice grids and prisms are antimagic [J].
Cheng, Yongxi .
THEORETICAL COMPUTER SCIENCE, 2007, 374 (1-3) :66-73
[10]   A new class of antimagic Cartesian product graphs [J].
Cheng, Yongxi .
DISCRETE MATHEMATICS, 2008, 308 (24) :6441-6448