Even-odd partition identities of Rogers-Ramanujan type

被引:3
作者
Afsharijoo, Pooneh [1 ]
机构
[1] Univ Paris Diderot, Paris, France
关键词
Integer partitions; Partition identities; Rogers-Ramanujan identities;
D O I
10.1007/s11139-021-00470-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a theorem which adds a new companion to the Rogers-Ramanujan identities. This new companion counts partitions with different type of constraints on even and odd parts. Generalizing this theorem, we obtain two families of partition identities.
引用
收藏
页码:969 / 979
页数:11
相关论文
共 11 条
  • [1] Afsharijoo P., 2020, ARC SCHEMES SINGULAR, P145
  • [2] Looking for a New Version of Gordon's Identities
    Afsharijoo, Pooneh
    [J]. ANNALS OF COMBINATORICS, 2021, 25 (03) : 543 - 571
  • [3] Andrews G. E., 1998, CAMBRIDGE MATH LIB
  • [4] A MOTIVATED PROOF OF THE ROGERS-RAMANUJAN IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1989, 96 (05) : 401 - 409
  • [5] Bruschek C., 2011, DISCRETE MATH THEOR, P211
  • [6] Arc spaces and the Rogers-Ramanujan identities
    Bruschek, Clemens
    Mourtada, Hussein
    Schepers, Jan
    [J]. RAMANUJAN JOURNAL, 2013, 30 (01) : 9 - 38
  • [7] A COMBINATORIAL GENERALIZATION OF ROGERS-RAMANUJAN IDENTITIES
    GORDON, B
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1961, 83 (02) : 393 - &
  • [8] Greuel GM., 2002, SINGULAR INTRO COMMU, DOI DOI 10.1007/978-3-662-04963-1
  • [9] A motivated proof of Gordon's identities
    Lepowsky, James
    Zhu, Minxian
    [J]. RAMANUJAN JOURNAL, 2012, 29 (1-3) : 199 - 211
  • [10] Mourtada H, ANDREWS GORDON IDENT