Strategies, design and synthesis of advanced nanostructured electrodes for rechargeable batteries

被引:17
作者
Rahman, Md Mokhlesur [1 ]
Sultana, Irin [1 ]
Fan, Ye [1 ]
Yu, Baozhi [1 ]
Tao, Tao [1 ,2 ]
Hou, Chunping [3 ,4 ]
Chen, Ying [1 ]
机构
[1] Deakin Univ, Inst Frontier Mat, Waurn Ponds, Vic 3216, Australia
[2] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[3] North Minzu Univ, Coll Mat Sci & Engn, Yinchuan 750021, Ningxia, Peoples R China
[4] Bolt Technol Co Ltd, Yinchuan Technol Bldg,South Tongda St, Yinchuan 750011, Ningxia, Peoples R China
基金
澳大利亚研究理事会;
关键词
HIGH-CAPACITY ANODE; ENHANCED LITHIUM STORAGE; HIGH-PERFORMANCE ANODE; NA-ION BATTERIES; REDUCED GRAPHENE OXIDE; LI-ION; CATHODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; CARBON NANOTUBES; SULFUR BATTERIES;
D O I
10.1039/d1qm00274k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanotechnology and nanomaterials engineering have played a crucial role in the recent development of energy conversion and storage systems. Huge efforts have been made for advancing energy storage technologies particularly battery technologies including lithium-ion, sodium-ion, potassium-ion, and lithium-sulfur batteries. As electrodes (anodes and cathodes) are the key components of these rechargeable batteries, any improvement in electrode materials can effectively enhance the performance of these devices. The combination of nanotechnology and nanomaterials engineering has been proven to meet this challenge through the discovery or development of new materials chemistry, especially frontier materials at the nanoscale. In this review article, we briefly summarize our battery research based on the application of a wide range of nanomaterials over the last decade. The major goal of this review is to highlight various strategies to tackle problems associated with electrode materials and to discuss different approaches for the synthesis of nanomaterials with improved electrochemical performance. To achieve high performance rechargeable batteries, various design and synthesis strategies as well as new material properties are discussed. A number of future research directions are also suggested in this review article.
引用
收藏
页码:5897 / 5931
页数:35
相关论文
共 209 条
[1]   From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries [J].
Adelhelm, Philipp ;
Hartmann, Pascal ;
Bender, Conrad L. ;
Busche, Martin ;
Eufinger, Christine ;
Janek, Juergen .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :1016-1055
[2]   Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: experiment and theory [J].
Baggetto, Loic ;
Ganesh, P. ;
Sun, Che-Nan ;
Meisner, Roberta A. ;
Zawodzinski, Thomas A. ;
Veith, Gabriel M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (27) :7985-7994
[3]   Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Chang, Wonyoung ;
Yu, Xiqian ;
Hu, Enyuan ;
Hwang, Sooyeon ;
Stach, Eric A. ;
Kim, Kwang-Bum ;
Chung, Kyung Yoon ;
Yang, Xiao-Qing .
CHEMISTRY OF MATERIALS, 2013, 25 (03) :337-351
[4]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[5]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[6]   Carbon Coated ZnFe2O4 Nanoparticles for Advanced Lithium-Ion Anodes [J].
Bresser, Dominic ;
Paillard, Elie ;
Kloepsch, Richard ;
Krueger, Steffen ;
Fiedler, Martin ;
Schmitz, Rene ;
Baither, Dietmar ;
Winter, Martin ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2013, 3 (04) :513-523
[7]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[8]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[9]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[10]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192